

Simulation Overview of the current standardisation landscape on QT

1st AIT Workshop on Standardisation and certification of QKD systems and QKD networks

On-line, Sept. 28th 2021

Vicente Martin, Vicente@fi.upm.es

Standards & QT

- Standard: Consensus documents approved by a Standard Developing Organization (SDO).
 - Provide rules, guidance, vocabulary, characteristics of devices, methods, processes...
- They are based on consolidated results from science, technology or experience.
 - Their purpose is to maximize the benefits for a community of producers/consumers.
- What to standardize?
 - Quantum technologies (QT) cover a very broad TRL spectrum.
 - Which QT is mature enough to need an standard?
 - Which QT interacts with other technology to need an standard?

Today's Main themes in QT & standards

- QKD
- QKD Certification
- General Quantum Communications
 - Quantum Internet
- Quantum Networking
- Quantum Computing
 - Vocabulary, performance & benchmarking
- General Quantum Technologies
 - Roadmapping, including: communications, computing, sensing and simulation.

- Security Certification: Why a consumer should trust that a given QKD implementation is secure?
 - Formal Security in the QKD context: Information Theoretic Security
 - It is not computational security, as is usual today.
 - Practical security in the QKD context: Implementation
 - To what extent the implementation matches the formal proofs?
 - Research is still needed.
 - Define requirements that a given implementation has to met for a given use \rightarrow protection profiles.
 - Rooted in much conventional experience.

- Other Relevant organizations.
 - ANSI: American National Standards Institute.
 - Private, oversees US standards ("US CEN"?)
 - NIST: National Institute of Standards and Technology
 - Physics & Tech lab. Not Regulatory
 - However FIPS (Federal Information Processing Standards) came from here (e.g FIPS-120). The PQC call. NIST-800 (e.g. On key management)
 - IETF: Internet Engineering Task Force
 - Not for profit. Non-mandatory standards (but widely used: RFCs come from here)
 - IRTF: Internet Research Task Force (longer term, research oriented)
 - QIRG: "Quantum Internet Research Group" (2018)

- Other Relevant organizations.
 - IEEE-SA: Institute of Electrical and Electronic Engineers Standards Association
 - Not endorsed by any government to produce standards.
 - Industry participated.
 - Examples IEEE 802.3 (ethernet) 802.11 (WiFi), 754 (Floating point), 1363 (Public Key Crypto), 1588 (Precision Time Protocol)
 - P1913 "SW Defined Quantum Communications" (2016)
 - P7130 "Quantum Technologies Definitions" (2020)
 - P7131 "Quantum Computing Performance Metrics & Performance Benchmarking" (2020)
 - **GSMA:** "Group Special Mobile" Association.
 - Not a group doing standardization, but highly influential.
 - White paper "Quantum Computing, Networking and Security "

Thank you!

1st AIT Workshop on

Standardisation and certification of QKD systems and QKD networks

OPEN () QKD

Vicente Martin, Vicente@fi.upm.es

EU H2020 Grant 820466

EU H2020 Grant 857156