Telefónica

Session: Standards for Building Large QKD Networks

1st AIT Workshop on Standardisation and certification of QKD systems and QKD networks

On-line, Sept. 28th 2021

Outline

General Structure. What is new?

- Decouple & Reuse : A network with two planes
 - An E2E overlay
 - The Quantum Forwarding Plane
- Favor a large ecosystem
 - Integration in security ecosystem
 - Integration in networking ecosystem
- A generic model
- Settling for a Specific model : SDN
 - What has been done / what is missing

- Quantum Networks as composed of two planes
- An E2E, overlay plane, where the "product of quantum resources" becomes available
 - With a structure suited to the specific service
 - Key distribution in a QKD network, where the keys are stored and delivered by a KMS
 - Qubit transmission in teleportation
- A Quantum Forwarding Plane (QFP), to encapsulate the "transport" of quantum signals
 - Direct qubit exchange
 - Entanglement distribution

Network Structure

- A Quantum Network is just a collection of nodes
 - E2E (overlay) plane components combined with QFP components
- E2E components as complex (KMS for QKD) or simple (quantum buffer for teleportation) as required
- E2E and QF planes interact through a control module
 - Applying SDN principles for network operation and management

Favor a Large Ecosystem: Disaggregation

Why consider **disaggregation**?

- We want to help QKD to become a mainstream technology.
- Parts of a QKD network are actually extensions of classical technology
 - e.g.: The Key management systems (needs adapted symmetric key mgmt.)
 - e.g.: The controller in a SDN network (needs how to control QKD systems)
- If the components/interfaces are clearly specified (and large enough):
 - The key mgmt. company could put an add-on module to support fast renewal of symmetric keys and have a "QKD-ready" product.
 - The SDN SW company could include a control module in e.g. OpenDaylight to integrate QKD in networks.
- Opens the door to other industries to become part of a QKD ecosystem.

> Once the components are fixed this determines the INTERFACES.

Intra-node (local) interfaces:

- App Key manager interface.
- Key manager QKD Forwarding module .
- Key manager QKD module
- Key manager Control interface.
- Control QKD module interface:
- QKD Module Forwarding Module interface
- Control Forwarding Module Interface

Inter-node interfaces:

- Key management related node interfaces:
 - Node KM to node KM interface
 - Node KM to Central KM interface
- Control Node interfaces:
 - Node KM to Network Control Interface
 - Node Control to network Control Interface
 - QKD Network Control peer interface

NOTE: not all interfaces have to be present always.

- Because they are **exclusive**, e.g. A interface for a centralized component in a distributed implementation
- Because the implementation coalesces two components into one, then their (explicit) interface dissapears.

Interfaces

Intra-node (local) interfaces:

- App Key manager interface.
- Key manager QKD Forwarding module .
- Key manager QKD module
- Key manager Control interface.
- Control QKD module interface:
- QKD Module Forwarding Module interface
- Control Forwarding Module Interface

Telefónica Interfaces

Inter-node interfaces:

- Key management related node interfaces:
 - Node KM to node KM interface
 - Node KM to Central KM interface
- Control Node interfaces:
 - Node KM to Node Control Interface
 - Node KM to Network Control Interface
 - Node Control to network Control Interface
 - QKD Network Control peer interface (e.g. between domains or networks or between classical and quantum sections of the network if classical/quantum control is separated)

NOTE: not all interfaces have to be present always.

- Because they are **exclusive**, e.g. A interface for a centralized component in a distributed implementation
- Because **the implementation coalesces two components** into one, then their (explicit) interface dissapears.

 Components can be mapped in Centralized or Distributed architectures.

E.g.: Centralized Control SDN QKD Network

E.g.: SDN QKD Node

 Some of the Interfaces were already subject of standardization at ETSI.

and 014 Key API. ETSI ISG GS 004 ETSI SDN QKD GS 015, SDN Control Interface

• But many are not ... **NBI** among SDN controllers of Contro **NBI** among SDN Contro QKD/Classical controllers of QKD networks domains/vendors SDN-QKD 018 SDN-QKD Node JB: SDY-SDA QKD QKD -QKD Node SDK= QKD Contro QKD QKD Contro SDN-OTN SDN-QKD Node OKD SD**Y** OTN OTI SDK QKD QKD

018 ETSI SDN QKD GS 018, Orchestration Interface for SDN Networks

Conclusions

- Importance of clearly defining "What is new"
 - E2E overlay plane for services/products of the
 - Quantum Forwarding Plane
- Keep an eye on the ecosystem
 - We are not alone: Interface with what exists, facilitate new players (dissaggregation)
- From a general model to a Specific one.
 - Flows of information -> Interfaces, standards
- Not discussed: setting up and managing the whole infrastructure
 - Operationalization