Standarization needs for a QKD startup

1st Workshop : Standardisation and certification of QKD systems and QKD networks

Sep 28th, 2021

Sebastian Etcheverry, CTO

Spin-off from ICFO focused on developing quantum key distribution systems and technology

Continuous variable quantum key distribution

Based on telecommunication components.

Ideal for network integration.

High performance at metro distances.

Cost-effective.

ICFO- The Institute of Photonic Sciences - Barcelona

QKD standardization

Definition of standards will help QKD manufacturers start-ups to

- Reduce time-to-market
- Speed-up deployment and field validation in relevant use-cases
- Develop products that can be part of a network security ecosystem
- Provide products with high security standards considering practical implementation
- Provide flexibility to the customers and facilitate the adoption of QKD technology

Define and focus technical developments (software interfaces, components, etc)

Network interoperability

Interface between QKD and application Example: using QKD with commercial hardware security modules

ETSI GS QKD 004

Quality of service, flexible, multiple sessions, network metadata, implementation agnostic

ETSI GS QKD 014

Rest-API, single-key request, simple implementation.

Network interoperability

Software define network interfaces (SDN)

SDN-QKD would facilitate the deployment of QKD in telecommunication networks (zero-touch integration) and reduce costs (avoid building networks exclusively for QKD).

Standards such as the ETSI QKD 015 (drafting) are needed

- QKD integrated at the physical level and connected to the network controller.
- Architectural design based on a YANG model to orchestrate the QKD resources
- Direct and virtual (multi-hop) links

Start-ups/QKD manufactures targeting telecommunication industry as main customer are expected to follow/participate on SDN-QKD developments and implement defined standards

QKD module security

Modules and components

Standards are needed for selection of components and internal module design.

- Characterization procedure for critical components (i.e. modulators, detectors)
- Characterization of new components (i. e. QRNG) to meet regulatory requirements.
- Analysis of practical implementations of QKD protocols (control electronics, digital signal processing) methods, auxiliary signals, etc)
- Side-channel attacks and countermeasures
- Characterization procedures for output signals (i.e. ETSI QKD 016, drafting)

Some available standards; ETSI GS QKD 011, ETSI GR QKD 003 Drafting ISO/IEC 23837, ETSI GS QKD 016 protection profile – aiming at certification of QKD

QKD module security

Protocols and security proofs

Standards needed for selection of QKD protocol and implementation of data processing

- Approved protocols for DV-QKD and CV-QKD based on the maturity of security proof and practical implementation.
- amplification).
- Authentication procedure (pre-stored keys, PQC)

Evaluation procedure for parameter estimation and reconciliation (error correction codes, privacy)

Some available standards ETSI QKD 005 (drafting), ETSI GR 003

QKD network security

Trusted nodes and key management

Standards needed for developing interfaces for network operation

- Trusted relay implementation (i. e. data processing, bitwise XOR)
- Defense-in-depth (combination with PCQ or traditional methods)
- Authentication and key management in network environments
- Interoperability of QKD from different vendors
- Denial-of-service countermeasures
- Additional requirements for certification; MTBF

Software define network, network architectures, and framework for integration of QKD in networks.

Some available standards; ITU-T 3800, ITU SG17 XSTR-SEC-QKD, ETSI GS QKD 003

Conclusions

- Definition of standards will facilitate the deployment of QKD and its adoption by ullettelecommunication industry
- authentication, and denial-of-service.

Start-ups developing QKD system would highly benefit by early definition of standards to focus technical development, and allow for field validation in large networks and relevant use-cases

Standards will provide solutions to critical aspects of QKD such as side-channel attacks,

Thank you

sebastian.etcheverry@luxquanta.com

