

Call (part) identifier: H2020-SU-ICT-2018-3

Topic:
SU-ICT-04-2019

Quantum Key Distribution Testbed

Grant Agreement /

Contract Number:
857156

Project Acronym: OPENQKD

Open European Quantum Key Distribution Testbed

Portal for virtual testbed access “QKXperience”

Deliverable: D4.4 Lead: VSB

Project month: M29 31. 01. 2022

Work package: WP4 Task: T4.3

Type: Other Version: 1.0

Dissemination level: Public

Ref. Ares(2022)711167 - 31/01/2022

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

2 / 23

This project has received funding from the European Union‘s Horizon 2020 research and in-

novation programme under grant agreement No 857156.

More information available at https://openqkd.eu/.

Copyright Statement

The work described in this document has been conducted within the OPENQKD project. This

document reflects only the OPENQKD Consortium view and the European Union is not re-

sponsible for any use that may be made of the information it contains.

This document and its content are the property of the OPENQKD Consortium. All rights rele-

vant to this document are determined by the applicable laws. Access to this document does

not grant any right or license on the document or its contents. This document or its contents

are not to be used or treated in any manner inconsistent with the rights or interests of the

OPENQKD Consortium or the Partners detriment and are not to be disclosed externally without

prior written consent from the OPENQKD Partners.

Each OPENQKD Partner may use this document in conformity with the OPENQKD Consortium

Grant Agreement provisions.

https://openqkd.eu/

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

3 / 23

Document Information

Author List

Organization Name E-mail

AIT Florian Kutschera Florian.kutschera@ait.ac.at

UNSA Emir Dervisevic emir.dervisevic@etf.unsa.ba

UNSA Miralem Mehic miralem.mehic@etf.unsa.ba

VSB Ladislav Behan ladislav.behan@vsb.cz

VSB Lukas Orcik lukas.orcik@vsb.cz

VSB Miroslav Voznak miroslav.voznak@vsb.cz

Reviewer List

Organization Name E-mail

OR Jonathan Belhassen jonathan.belhassen@orange.com

OEAW Lukas Edengruber Lukas.Edengruber@oeaw.ac.at

Version History

Version Date Reason / Change Editor

0.1 Initial Release Florian Kutschera

0.2 04.01.2022 Secondary Release Miralem Mehic

0.3 14.01.2022 Third Release Florian Kutschera

1.0 31.01.2022 Final Release Florian Kutschera

mailto:Florian.kutschera@ait.ac.at
mailto:emir.dervisevic@etf.unsa.ba
mailto:miralem.mehic@etf.unsa.ba
mailto:ladislav.behan@vsb.cz
mailto:lukas.orcik@vsb.cz
mailto:miroslav.voznak@vsb.cz
mailto:jonathan.belhassen@orange.com
mailto:Lukas.Edengruber@oeaw.ac.at

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

4 / 23

Executive Summary

The aim of this deliverable is not only to provide an overview of the virtual test bed which

displays all relevant information about the use case and its performance metrics collected from

the use cases over the time of this project but also to provide an in-depth introduction of the

test bed simulator.

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

5 / 23

Table of Contents

Executive Summary ... 4

1. Introduction .. 7

1.1. Purpose and scope of the document ... 7

1.2. Target audience .. 7

1.3. Relation to other project work.. 7

1.4. Structure of the report ... 7

2. Data collection .. 8

2.1. Reference Collector .. 8

2.2. Collector Scripts .. 8

3. Performance GUI .. 9

3.1. Database .. 9

3.2. Visualization of Performance Data .. 9

3.3. Web Interface ... 9

4. QKDNetSim web interface ... 13

5. Examples .. 17

5.1. Example #1 ... 18

5.2. Example #2 ... 21

6. Summary ... 23

7. References .. 23

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

6 / 23

Abbreviations and Acronyms

This report uses the following abbreviations and acronyms:

QKD Quantum Key Distribution

SDO Standards Developing Organizations

QCI Quantum Communication Infrastructure

SME Small Medium Enterprise

API Application Programming Interface

QRNG Quantum Random Number Generator

SDN Software Defined Networking

SDQN Software Defined Quantum Networks

QT Quantum Technologies

ETSI European Telecommunications Standards Institute

ISO International Organization for Standardization

TCO Total Cost of Ownership

R&D Research and Development

EU European Union

CSA Coordination and Support Action

TRL Technological Readiness Level

PR Public Relation

SW Software

CA Consortium Agreement

IA Innovation Action

KPI Key Performance Indicators

POC Proof of Concept

MANET Mobile Ad Hoc Networks

NFV Network Function Virtualization

PoP Point of Presence

ITS Information Technology Solutions

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

7 / 23

1. Introduction

1.1. Purpose and scope of the document

The purpose of this document is to present the implementation of the virtual test bed that con-

tains all performance data collected from the use cases on the one hand and also the test bed

simulator, its function and some examples on the other hand.

1.2. Target audience

This deliverable is intended for a public audience as a how to guideline for navigating the virtual

test bed as well as giving an overview of all the different settings of the test bed simulator that

is interested in using these services.

1.3. Relation to other project work

Task 4.3, which this deliverable is based on, is connected to the work-packages 6, 7, 8 and

10.

Work-packages 6, 7 and 8 contain different parts of metrics collection from use cases and test

beds that are accessible through the virtual test bed interface.

In work-package 10 the graphics produced by task 4.3 will be used for dissemination activities.

1.4. Structure of the report

This report will be divided into two parts.

The first part will describe the collection of performance data from the different test beds and

will give an overview of the virtual test bed application itself which contains data about all use

cases and performance data of the already running test beds that are providing data.

In the second part an in-depth description of the test bed simulator will be given. On the one

hand it describes how the simulator is working and on the other hand to provide some basic

understanding of its functions. Additionally, also some examples will be provided in order to

give some possible testing scenarios which outcomes are explained in detail.

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

8 / 23

2. Data collection

2.1. Reference Collector

For collecting performance data from the different use cases the reference collector is used

at various test beds of the OpenQKD project. The reference collector can either be deployed

as a virtual machine or be installed on a physical computer. Either way, access to all devices

that should be monitored is required. If it is not possible to access all devices from one col-

lector node, multiple instances of the collector can be used in a single test bed.

In case the collector can not connect to the AIT server, for example because of a network

problem, the collected data is cached for two weeks in the collector node before it is dis-

carded.

The exact function of the reference collector is described in Deliverable 6.4.

2.2. Collector Scripts

For each type of device a unique script has to be created in order to collect the performance

data. Those scripts can then be used by all test beds and use cases that are using the same

device types. At this moment of time such scripts were already created for IDQuantique Cer-

beris3 and the Toshiba QKD Systems.

Those scripts have then to be adopted specifically for each test beds network architecture

where they are used at and also for the exact data that is going to be collected.

That includes for example IP addresses, which data to collect and login credentials.

In the case of having devices from multiple vendors installed in the same test bed, collector

scripts for each system type can be run on the same reference collector instance. It is only

necessary to have multiple reference collector servers if not all systems can be reached from

one system.

The collected data has then to be converted into the OpenQKD project specific message for-

mat. These messages, sent over Kafka, are sent together with a key. The key is used to de-

scribe the message: format, sender and a timestamp. For kafka the message is just a byte

array with a maximum size of 1 MB. The key gives us the possibility to add more message

formats in the future if necessary.

If the connection to the AIT can not be established, for example because of an internet out-

age, the data in the local Kafka is stored for two weeks but can be configured to buffer the

data for even longer

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

9 / 23

3. Performance GUI

3.1. Database

The data sent to the central Kafka, from the local Kafkas at the test beds, is stored into an

InfluxDB that is hosted at the AIT.

3.2. Visualization of Performance Data

The graphics used on the web interface are created by Grafana. These graphics are precon-

figured specifically for each and every use case and shown datatype (see fig. 1).

Even though the graphics are predefined, the time range shown in these graphics can be

changed freely through the time settings on the web interface. The duration and the time set

will then be used for all shown use cases until it gets changed again.

The settings for the graphics are extensive and, among other things, the scaling of the axes

and line thicknesses can be changed freely.

3.3. Web Interface

The access to the use case information, performance data and resulting graphics of the

OpenQKD use cases is secured through user authentication and can be accessed over

https://database-service.openqkd.eu/gui/ being the login page (fig. 2)

Figure 1: Preconfigured graphs in Grafana

https://database-service.openqkd.eu/gui/

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

10 / 23

Depending on the user that logs in, the data that can be seen might differ from what will be

shown here.

After login the overview map is shown as indicated in fig. 3 where all use cases with basic

information about them can be found. For easier distinction the use cases are color coded

according to their current state. Black for upcoming, orange for ongoing and green if the use

case has already concluded.

After clicking on one of the use cases, depending on the amount of data received and user

permissions, only the use case information or multiple options for more information about the

use case, visualizations of the collected data or even an overview map that shows the differ-

ent links that were used for that use case are shown.

Figure 3: Overview Map

 2: Login Page

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

11 / 23

If the logged in user has the necessary permissions, more information like a status map of

the use case with additional information of the collected data, and also multiple graphics cre-

ated from that data can be found. The time span from which information shall be shown can

be selected freely. It is also possible to use the button to jump to the point in time where

the last data of a use case was recorded. If another use case is selected afterward, the “till”

date won’t change automatically and it might be necessary to push the button again in case

one of those use cases ended before the other.

Figure 4: Overview Map Options

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

12 / 23

In the top right-hand corner of the status map page is a list of metrics can be found that can

be selected freely depending on what information should be displayed. The information dis-

played is an average value over the time that is selected on the top bar of the page.

If hovering over the lines or icons, information about the links and nodes will be displayed.

On the Graphs page all performance metrics of the selected use case are shown each in

their own plots. The plots shown might differ depending on the use case as not all use cases

are collecting the same data-sets.

Figure 5: Status Map

Figure 6: Performance Data Graphic

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

13 / 23

4. QKDNetSim web interface

The OPENQKD team has implemented a virtual web environment to simulate QKD links be-

tween remote locations accessible via link www.open-qkd.eu. It is a web interface for the

quantum key distribution network simulator (QKDNetSim) being developed within WP6.

QKDNetSim is a simulation module designed to expand the NS-3 network simulator with QKD

network functionalities [1] ⁠. Its primary purpose is to analyze different approaches to QKD net-

work organizations, simulate networking technologies considering integrating QKD systems

into existing telecommunications networks concerning network security [2] ⁠. The current stable

version of QKDNetSim is 2.0.1, and it is compatible with the 3.33 version of the NS-3 simulator.

During the QKDNetSim module development, no modifications were made to the core compo-

nents of the NS-3 simulator (more details can be found in deliverable D6.3).

QKDNetSim follows the well-accepted organization of QKD node implementing components

such as QKD key, QKD buffer (storage), QKD post-processing applications, and QKD encryp-

tors [3]⁠. Also, it is equipped with a Key Manager System (KMS) that supports ETSI GS QKD

014 [4]⁠ standard API interfaces for key delivery to the applications and implements functional-

ities that currently can support point-to-point communications. To verify KMS functionalities,

dedicated QKD applications are developed, each employing a different API interface to com-

municate with the KMS. The QKD applications allow simulations of the QKD-enabled secure

communications in various cryptography or network organization settings. All realized compo-

nents are independently developed, enabling their installation on separate nodes and realizing

large-scale network simulations using Message-Passing Interface (MPI) libraries on High-Per-

formance Computing (HPC) platforms.

http://www.open-qkd.eu/

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

14 / 23

Figure 7: QKDNetSim Web Interface Back-end Organization Scheme

QKDNetSim is a console-oriented simulator that allows visualization of network topologies us-

ing the NS-3 tools NetAnim and PyViz. However, a web interface has been implemented for

more accessible access to the network simulator (fig. 7). The web interface consists of two

main parts, the graphical user interface (GUI) and the back-end. Through the web interface,

the user can select points on the map, between which the distance is automatically calculated

(based on the road distance between selected locations), and adjust simulation parameters

such as the key generation rate, type of cryptographic techniques, and ETSI 014 parameters

such as the number of keys requested from KMS entities in a single request, application and

KMS operation time settings (fig. 8).

After entering all the parameters correctly, the application sends an API request to initialize the

QKD simulator docker application. After completing the simulation process, the user is in-

formed about the achieved results.

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

15 / 23

Figure 8: The sequence diagram of communication between QKDNetSim entities
based on ETSI 014 standard

The simulation process begins with the user selecting locations of remote nodes on the map

and defining simulation parameters, as shown in Figure 2. One of the fundamental parameters

for setting is the QKD key rate, which is the intensity of QKD key generation. Given that today's

QKD systems are limited to a range of up to about 50 - 80 km where the QKD key rate is 10-

50 kbps [2]⁠, the user can define a smaller distance to increase the key rate. However, for

distances longer than 80 km, it is necessary to use a trusted relay approach in which the total

intensity of the QKD path is limited by a bottleneck link (approximately 10 kbps). Additionally,

the user defines the parameters of the post-processing application by specifying the average

intensity and size of the post-processing traffic packets (fig. 9). The increased post-processing

traffic can affect the key generation rate and the speed of sending user data traffic due to the

risk of congestion on public channels [5] ⁠. Then, the user defines the data traffic settings.

Namely, the types of cryptographic algorithms used, the size of data packets, and traffic inten-

sity are determined.

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

16 / 23

Figure 9: QKDNetSim web interface parameter configuration

The parameter that defines the number of packets served by the KMS according to the appli-
cation is of particular interest. Suppose the KMS does not have enough keys in the warehouse.
In that case, it is not possible to deliver keys to the application, and it is not possible to ex-
change encrypted traffic between remote applications. The deployed version of QKDNetSim
does not terminate if there are not enough keys for traffic protection. That is, only those packets
for which there are enough keys will be protected. Accordingly, a parameter that defines the
number of packets that will be encrypted if the AES algorithm is selected is also of interest
(see example #2).

Once the Docker instance has been successfully allocated (the icon in the upper right corner
turns green), the user can run the simulation and analyze the collected data (fig. 10).

Figure 4: The output results of the simulation

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

17 / 23

5. Examples

This section provides an overview of the simple usage of QKDNetSim with the integration of

the ETSI 014 standard through examples. Throughout this section, key information is provided

to the user to assist in correctly interpreting results. QKDNetSim allows communication be-

tween two applications running on adjacent QKD nodes. To avoid confusion, the web interface

allows users to adjust the settings of QKD applications that are in charge of establishing keys.

In the rest of the text, these applications are denoted as QKD post-processing applications

while key-consuming applications are simply denoted as Alice’s and Bob’s applications.

Let's assume Alice's application wants to communicate with Bob's application securely. In that

case, Alice's application will apply some cryptographic methods to the sensitive data to make

sure it's secure transit to its recipient, Bob's application. The application can choose between

the OTP (One-time pad) and the AES-128 encryption methods to assure confidentiality.

Moreover, if the application wants authentication services for its traffic, VMAC and SHA1 are

available options. The encryption (and the VMAC authentication) requires symmetric secret

keys to be established between Alice's and Bob's applications. In QKDNetSim, applications

are served by KMS with QKD key material as symmetric keys, and the communication between

them is defined by ETSI GS QKD 014 standard. The users can define not only cryptographic

methods and specific parameters related to them (such as the AES lifetime) but also the ap-

plication's data rate and packet size, for example. Furthermore, some key parameters of the

QKD layer are also specified by users' desires, as explained in the previous section. This sec-

tion provides examples, e.g., experiments and results analysis.

NOTE: If the application desires OTP encryption, the packet size (defined in bytes) must be

less or equal to the default size of the QKD keys generated and stored in QKD Buffers on the

KMS. The default size of the QKD key is set to 8092 bits and could be changed by the user.

This limitation comes from the fact that KMS application deployed in the current version of

QKDNetSim web simulator does not support key management functions which would allow

shaping (key merge and split operations as well as the other KMS functionalities that will be

available in the next version of QKDNetSim) of the QKD keys, and thus, the KMS can provide

only keys whose size is less than 8092 bits.

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

18 / 23

5.1. Example #1

This first example provides an application's performance analysis and quantum key usage

against different cryptographic methods. The constant parameters in these simulations are

listed in Table 1. The obtained results of this experiment are shown in Table 2.

Table 1. Constant simulation parameters. It is recommended to set the earlier start time

of the QKD post-processing application in relation to the start time of the application

that consumes the keys, so that the keys in the QKD buffers can be generated in ad-

vance.

 Parameter Value

Application

configuration

Start time [s] 10

Stop time [s] 50

Number of keys to fetch

per get_key request

10

Data rate [kbps] 10

Packet size [bytes] 300

QKD

configuration

Start time [s] 0

Stop time [s] 50

Key rate [kbps] 100

Some specific parameters regarding the KMS configuration are not available for users to con-

figure through the web virtual environment. They can be specified in the source code. How-

ever, the users of the simulator should be aware of them! For example, the KMS is configured

to allow ETSI 014 GET_KEY request if the requested number of keys is no more than 100.

Furthermore, the requested key size must be multiple of 8 (this will be satisfied as the user, if

he uses OTP, specifies packet size in bytes, thus, key size will always be multiple of 8). If some

of the users’ parameters do not adhere to the KMS rules, the KMS will respond with an error

message which will provide users with the information of the error, and the simulation will be

stopped. However, the error returned because the KMS currently does not have enough key

material to serve the application will not stop the simulation, rather, the application will simply

try again after a constant amount of time has passed (3 seconds).

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

19 / 23

Figure 5. If not enough keys are available, the QKD Application will wait 3 seconds before

requesting keys from KMS again. Users can specify how many keys the application will request

from KMS in its requests.

Table 2. The comparison of exchanged data and signalling packets between QKDApps and

QKDApps and KMS in case of different cryptographic methods being employed

Cryptographic
method

data
packets
exchanged

signaling
data packets
exchanged

packets
to KMS
exchanged

keys
consumed

keys
generated

Unprotected 167 0 0 0 586

OTP 161 34 35 170 586

OTP + VMAC 60 13 15 70 586

AES (*refresh 5) 164 8 9 40 586

AES (*refresh 5) +
VMAC

166 8 9 40 586

AES (*refresh 10) 167 4 5 20 586

AES (*refresh 10) +
VMAC

167 4 5 20 586

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

20 / 23

* The current version of QKDNetSim specifies the AES refresh rate in the number of packets that are

encrypted using the same secret key!

Signaling data packets are packets through which Alice's application notifies Bob's application

of the obtained key material conveying their keyIDs. Based on this information, Bob's applica-

tion will use ETSI 014 GET_KEY_WITH_KEYIDS method to obtain (or try to obtain, as this

process could fail if some of the requested keys are not available or are already reserved for

other purposes) the same set of quantum keys. Alice's application cannot use the obtained

key material until Bob's application sends confirmation that it also successfully obtained the

requested set of keys. Signaling messages are implemented using REST API, and their spec-

ification is out of the scope of the ETSI 014 standard.

Column "# keys consumed" registers the number of keys consumed from the KMS perspective.

In the case of OTP, users expect that the number of packets application sent should be the

same as the number of keys consumed (as each packet is encrypted with a new key), but

results show otherwise. This can be explained as follows: the application obtains the set of

keys (in this case 10 keys) per request, and starts using the keys. Due to simulation time, the

application did not use all keys (from a set of 10 keys) obtained from the KMS, but from the

KMS perspective, these keys are consumed as they are served to the application. Therefore,

the number of packets sent by the application in the case of OTP can be lower than the keys

consumed -- from the KMS perspective -- (but not lower than the size of the set, which is 10 in

this case).

The number of keys consumed when encryption and VMAC authentication are applied com-

pared to the case where only encryption is applied is unchanged. This is due to the current

application design. If the application desires to use encryption and VMAC authentication, it will

obtain keys whose length is encryption_key_size + authentication_key_size. Later, the appli-

cation will use the first portion of the key for encryption purposes and the second for authenti-

cation.

The results show that the impact on the application's performance, that is, its data rate, is

negligible in every scenario (excluding OTP+VMAC). As expected, in the case of AES encryp-

tion, keys are requested less frequently. Moreover, one should keep in mind that these keys

are only 128 bits long (not only the number of keys consumed is lower compared to the OTP,

but the actual key consumption if compared in bits is significantly lower). The VMAC authenti-

cation should not have much of an impact on the application's performance, and it is correctly

shown in the case where AES encryption is combined with VMAC. However, the application's

data rate (determined by the number of packets sent) is significantly lower than expected if

OTP is combined with VMAC. This is due to an unexpected increase in delay between appli-

cation and KMS, which is introduced in some cases due to fragmentation on the IP layer and

the inability to send small fragments immediately (TCP Silly Window Syndrome avoiding algo-

rithms). Excluding this case, it is shown that the latency introduced to obtain QKD keys from

the KMS has no impact on the desired data rate of the experiment.

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

21 / 23

Key consumption given in bits shown in the results segment is much higher than users expect.

However, as it is previously mentioned, the KMS does not support key split or merge function-

ality, and thus, the KMS prepares a QKD key (whose size is 8092 bits) in a key whose size is

one requested by the application (128 bits in case of the AES encryption). The rest of the QKD

key is then deleted, resulting in a significant waste of the QKD key material! The KMS records

this waste of the QKD key material in "keys consumed in bits" together with the portion of the

key used.

5.2. Example #2

Example #1 showed that the latency introduced in obtaining the key material for a 10 kbps

application’s data rate is not enough to disrupt the application traffic. Example #2 shows that

the latency can impact the achieved data rate if the desired data rate is higher than 10 kbps.

Moreover, it shows the effect of the parameter “number of keys to fetch per request”, as key

requests can be more or less frequent. The results for different application data rates (but also

encryption methods) are shown in Table 3. The parameters not mentioned here are the ones

used in example #1.

Table 3. Performance analysis for various application’s data rate.

User defined application
data rate [kbps]

Encryption method
data packets

exchanged

keys

consumed

10

Unprotected 167 0

OTP 161 170

AES (10) 167 20

20

Unprotected 334 0

OTP 280 280

AES (10) 328 40

50

Unprotected 834 0

OTP 130 140

AES (10) 795 80

100

Unprotected 1667 0

OTP 140 150

AES (1) 270 270

AES (10) 1486 150

OPENQKD QKXperience D4.4

Contract Number: 857 156 VSB

22 / 23

The results show that the achieved application data rate noticeably decreases in the case of

OTP cipher being employed. If the application data rate is 100 kbps, the application transmitted

1667 packets when no protection is applied. Still, if the OTP cipher is used, the number of

transmitted packets significantly decreases to 140.

Two design implementation details, as well as the network performances, influence the appli-

cation performance. The first one is that the application is relatively simple: it obtains the de-

sired number of keys via one GET_KEY request from the KMS and starts sending the data.

However, when Alice's application consumes the acquired number of keys, data traffic is

stopped until a new set of keys is obtained. The overall latency (which includes latency for

Alice's application to obtain a new set of keys, signaling between Alice's and Bob's application

as well as the latency for Bob's application to obtain the same set of keys from its local KMS)

is influenced by the number of keys KMS has to provide via single response, and the size of

the keys (the performance of the link though which signaling data is sent can also be consid-

ered). If the number of keys with given sizes KMS needs to return is large, the application will

wait longer for the response due to the transmission delay. This impact is best shown by com-

paring the number of transmitted packets when OTP and AES (1 - refresh rate) is employed

for the desired data rate of 100 kbps.

The second thing to consider is the performance of the QKD layer. If the application's request

cannot be satisfied (the requested number of keys is not available), the application is stopped.

It will periodically probe KMS (every 3 seconds) to obtain a new key material if it becomes

available. If the desired application's data rate is too high and the user wants to use OTP or

even AES (1 - refresh rate), the KMS will run out of keys sooner, and on those occasions, the

application will wait 3 seconds before trying again. KMS must have enough keys available to

respond to the application's request (parameter "number of keys to fetch per request"). This

will significantly limit the application data rate, and the results obtained in the case of AES (1)

and AES (10) represent this scenario. The use of AES (10) will result in less frequent requests

to the KMS, and thus, the situations where KMS does not have the available number of keys

to respond to the application are more likely avoided.

The number of keys to fetch per request can also impact the performance. As mentioned pre-

viously, the large number of keys KMS has to return in a single response can increase the

delay between application and KMS due to large amounts of data to transmit, especially if the

size of the keys is also significant as in the case of OTP cipher. Moreover, while the application

can request a large number of keys and thus, make less frequent requests to the KMS, it is

more likely that the KMS will not be able to satisfy these application requests, resulting in a

more frequent application "punishment" of 3 seconds in waiting before making a new request.

The small number of keys, on the other hand, can result in frequent key requests, which can

quickly increase the time where the application waits for new key material.

While it seems less possible for KMS to run out of keys in some of the presented cases, due

to the lack of the key merge and split functionalities at the KMS, the QKD key buffer empties

more quickly (as a large amount of the quantum key material is wasted).

OPENQKD Short Title DX.X
Contract Number: 857 156 Lead

23 / 23

6. Summary

7. References

[1] M. Mehic et al., “Implementation of Quantum Key Distribution Network Simulation Mod-

ule in the Network Simulator NS-3,” Quantum Inf. Process., vol. 16, no. 10, p. 253, Oct. 2017,

doi: 10.1007/s11128-017-1702-z.

[2] M. Mehic et al., “Quantum Key Distribution: A Networking Perspective,” ACM Comput.

Surv., vol. 53, no. 5, 2020, doi: 10.1145/3402192.

[3] V. Martin et al., Quantum Technologies in the Telecommunications Industry. The Au-

thor(s), 2021.

[4] ETSI ISG QKD 014, “Quantum Key Distribution (QKD); Protocol and data format of

REST-based key delivery API,” vol. 1, pp. 1–22, 2019, [Online]. Available:

https://www.etsi.org/de-

liver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf.

[5] M. Mehic, O. Maurhart, S. Rass, D. Komosny, F. Rezac, and M. Voznak, “Analysis of the
Public Channel of Quantum Key Distribution Link,” IEEE J. Quantum Electron., vol. 53, no.
5, pp. 1–8, Oct. 2017, doi: 10.1109/JQE.2017.2740426.

