

Call (part) identifier:	H2020-SU-ICT-2018-3	
Topic:	SU-ICT-04-2019 Quantum Key Distribution testbed	
Grant Agreement / Contract Number:	857156	
Project Acronym: OPENQKD		
Open European Quantum Key Distribution Testbed		

First Report on Field Trial Execution		
Deliverable: D8.6	Lead: LMU	
Project month: M33	31. 05. 2022	
Work package: WP08 Task: T8.4		
Type: Report Version: 1.3		
Dissemination level: Public		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 857156.

More information available at <u>https://opengkd.eu/</u>.

Copyright Statement

The work described in this document has been conducted within the OPENQKD project. This document reflects only the OPENQKD Consortium view and the European Union is not responsible for any use that may be made of the information it contains.

This document and its content are the property of the OPENQKD Consortium. All rights relevant to this document are determined by the applicable laws. Access to this document does not grant any right or license on the document or its contents. This document or its contents are not to be used or treated in any manner inconsistent with the rights or interests of the OPENQKD Consortium or the Partners detriment and are not to be disclosed externally without prior written consent from the OPENQKD Partners.

Each OPENQKD Partner may use this document in conformity with the OPENQKD Consortium Grant Agreement provisions.

Document Information

Author List

Organization	Name	E-mail
LMU	Adomas Baliuka	A.Baliuka@physik.uni-muenchen.de
LMU	Lukas Knips	lukas.knips@mpq.mpg.de
LMU	Harald Weinfurter	h.w@lmu.de

Reviewer List

Organization	Name	E-mail
UNSA	Miralem Mehic	miralem.mehic@etf.unsa.ba

Version History

Version	Date	Reason / Change	Editor
1.0	30. 05. 2022	Last draft	Adomas Baliuka
1.1	31. 05. 2022	Small editorial changes	Andreas Poppe
1.2	03. 06. 2022	Comments by reviewers	Miralem Mehic
1.2a	03. 06. 2022	More use cases added	Harald Weinfurter
1.2b	07. 06. 2022	Review	Miralem Mehic
1.3	08. 06. 2022	Small editorial changes	Cristina Tamas

Executive Summary

The report is aimed at the general public and all interested in the state-of-the-art of QKD and quantum communication. It collects reports received from six finished use cases of QKD within the OPENQKD project, each describing the conditions of the individual projects, the deployment processes, results, KPIs and lessons learned during deployment and operation of several different QKD systems in various environments. This includes demonstrations in both scientific, as well as commercial settings.

Table of Contents

Executive Summary	
1 Introduction	7
2 Comments on Use Case Reports	
3 Use Case Reports	9
3.1 Use Case 02	9
3.2 Use Case 03	17
3.3 Use Case 12	21
3.4 Use Case 14	
3.5 Use Case 15	
3.6 Use Case 16	
3.7 Use Case 17	
3.8 Use Case 18	
3.9 Use Case 19	67
3.10 Use Case 20	74
3.11 Use Case 25	
3.12 Use Case 26	
3.13 Use Case 33	
3.14 Use Case 34	
3.15 Use Case 35	113
4 Remarks and Conclusions	

Abbreviations and Acronyms

This report uses the following abbreviations and acronyms:

QKD	Quantum Key Distribution
API	Application Programming Interface
QRNG	Quantum Random Number Generator
ETSI	European Telecommunications Standards Institute
ISO	International Organization for Standardization
EU	European Union
KPI	Key Performance Indicators
ITS	Information Technology Solutions
UC	Use Case
WP	Work Package

1 Introduction

1.1 Purpose and scope of the document

Deliverable D8.6 reports on use cases of QKD field trial execution within the OPENQKD project which were completed at the time of writing (April 2022). Among the points discussed are the conditions of the individual projects, the deployment processes, results, KPIs and lessons learned during deployment and operation of various different QKD systems in various environments. This includes both scientific demonstrations, as well as demonstrations in a commercial setting.

OPENQKD brings together a multinational consortium with diverse expertise on quantum technology, communication and security. In particular, it brings together providers of QKD devices and technology, both commercial and scientific, with providers of security and networking equipment, testbed providers, and, finally, end users, thus allowing them to experience the possibilities afforded by these technological advances and explore the new paradigms for securing data and communication made possible by quantum technology. We hope to increase awareness of the latest developments in the field and thus help further drive innovation and adoption of QKD, and that the testbeds and use cases described here can lead the way for quantum communication technology and cybersecurity in Europe and beyond.

1.2 Target audience

This report will be accessible to the *public* via the QPENQKD website. It aims to be of use for potential users of QKD and all wishing to keep informed about state-of-the-art development and adoption of QKD, such as decision makers in policy and industry. This is afforded by the diversity of the use cases, which explore both different technologies, as well as the space of potential applications of QKD in various sectors. This report also allows project partners, as well as all researchers and operators of QKD in general, to compare their systems, modes of operation and performance with these latest achievements and demonstrations.

1.3 Relation to other project work

This report is a result of task T8.4 (*Field Trial Execution and Repeatability*). The deployment and evaluation, as well as KPIs considered here build upon WP6 (*Quantum Network Functionality*) and WP7 (*Deployment and Operation of QKD Testbeds*). The KPIs themselves are defined by task T6.5 (*Support for Performance Evaluation and Metrics*). Further information on the testbeds is available in D8.3 (Testbed Replicability and Performance).

Of further relevance for field trial execution tasks are the open calls (T3.3, *Monitoring the Implementation Phase of Mini-Projects*), as well as T7.4 (*Use-Case Demonstrations*), where the use cases are defined and approved. The requirements and implementation of use cases are informed by task T2.2 (*Derivation of Requirements and Recommendation for Implementation*).

Network performance metrics used to assess use cases are defined in task T8.1 (*Definition of Network Evaluation and Performance*) in coordination with task T6.1 (*Adoption, Extensions and Support for the Layered Networks Approach*).

Further use cases not completed by the time of this deliverable will be reported on in D8.7 (Second and Final Report on Field Trial Execution).

1.4 Structure of the report

This report is structured as follows:

- Section 2 comments on the use cases discussed in the report.
- Section 3 provides the information about each completed use case as provided from the operators.
- Section 4 provides some concluding remarks.

2 Comments on Use Case Reports

In the following, use cases finished by April 2022 are detailed together with the achieved results and KPIs. More information on the definition of the KPIs and on the planned use cases can be found in D8.1, D8.3 and D8.4, respectively. The individual reports are given as received from the project partners operating the use cases.

3 Use Case Reports

3.1 Use Case 02

ID: 02		
Smart Grid		
Target sector: Critical InfrastructureCountry: CHMain site: Geneva		Site-1 Site-2
Country: CH Main site: Geneva Description from Proposal:		QKD Server Quantum Channel 🔅
For the 7 years to come, SIG will created	ite a Smart arid r	
work to connect its power stations (c	-	Secure
Each power station will be connected	•	
the SIG Telecom optical fibre networ		
tricity NOC using L2/L3 transport set		(Alice) (Bob)
cure data transmission/detection int		
ing control of the electricity distrib		
would like to test Quantic technology	•	
and operational environment.		
Towards this end, SIG will connect tw	o power stations	sto
the QKD testbed and asses availabl	e QKD technolog	lies
and services offered by our consortiu	m.	
		Image credit: Cisco
Partner		Role/Function
ID Quantique (IDQ)		QKD System provider
Services Industriels de Genèv	ve (SIG)	OTN provider and rack provider
	Impact	
Target sector planned impact:	Planned KPI de	
Smartgrid communications		re Latency impact generated by Encryption +
	QKD	
Companies attracted through use		re stability of the link
Case:		actise about key rotation update and service
- Electrical facilities		nity when the QKD link is down or the key ex-
Impl	ementation and	rate is too low compared to key request rate
Work plan/TODO list:		
1. Link topology and design		
 List the inventory of hardware and planning 		
 Request Cisco hardware and support (depending on SIG Cisco stock) 		
4. Prepare QKD system and deployment		
5. Integrate the QKD pair with	•	
 Schedule exact date for deployment with hardware and persor 		dware and personnel
7. Perform deployment in lab in		
Perform deployment on fina	l sites	
 Perform deployment on fina 9. Adjust deployment 10. Run use case 	l sites	

11. Analyse link performance		
12. Evaluate findings		
13. Retrieve QKD devices		
14. Write Report		
Site access		
- SIG Lignon Telecom Lab Unrestricted Restricted		
If restricted how: accompanied by SIG		
- SIG Lignon DIE power station Test Unrestricted Restricted Kestricted		
If restricted how: accompanied by SIG		
Available power		
What power delivery is available for telecom and quantum devices?		
- SIG Telecom Lab AC 230 🛛 DC 48 🗆		
- SIG Lignon power station Test AC 230 🖾 DC 48 🗆		
Internet connection (closed LAN with remote access via VPN)		
- SIG Telecom Lab Yes 🛛 No 🗆		
- SIG DIE power station Test Yes □ No ⊠		
block diagram		
Site-1 Site-2		
QKD Server QKD Server		
Quantum Channel 🌣>		
Secure		
Key Import Protocol Protocol		
Data Channel		
Cisco Device Cisco Device		
(Alice) (Bob)		
Existing equipment		
Telecom Lab : Use of 2 pairs of fibers, ¼ Rack, power		
DIE Power station test : TBD		
MUX / DEMUX		
QKD Systems		
Manufacturers and Devices		
- IDQ: IDQ-02		
Link details		
List of links (see database):		
A link has two pairs of dark fibers one for the QKD system and one for classical channel	s.	

Planned deployments

Phase 1 to start in January. Deployment of lab solution. Final deployment planned for March 21, planned to run for 10 months. Interfaces between layers: SKIP protocol Results Lessons learned: -Changes necessary to already deployed infrastructure: -KPI demo report: -Target sector demonstrated impact: -Estimated cost of implementation: -

Impact			
Target sector planned impact:	Achieved KPI demonstrations:		
 Business customer point to point on dedicated link 	 QKD key exchange with Cisco IOS-XE equipment Stability of the link 		
Companies attracted through use case:			
- Business customers (ONG, banking)			
Time of do	emonstration		
Deployment:			
- Deployment started on Oct 2021 and ra	n until Feb 2022		
Time of demonstration:			
- 1 month : Business link run with QKD fo	r 1 month : mid Jan 22 – mid Feb 22		
Re	esults		
Lessons learned:			
that we solved by evolution of the designeed as a prerequisite :	gn changes due to technical blockers encountered, gn. We learned that QKD key exchange equipment		
 Dedicated fibre to be able to ensure QKD. No MPLS or active equipment in the middle can be passed through. 			
 Fiber certification need to be pr 	ovided within precise values.		

OTDR Mea- surements	SCH distance	
	SCH loss in dB	
	QCH distance	
	QCH loss in dB	max 12, 14, 16, 18 dB per model
	distance diff btw SCH and QCH in m	max 20m for auto-cal, 15km manual
	,	ey factor for QKD in order to run properly, which im-
	plies a datacentre like envi rack mount facilities, stable	ronment : stable and cooled environment, clean room, e electrical power supply or UPS.
	plies a datacentre like envi rack mount facilities, stable Environment requirements	ronment : stable and cooled environment, clean room, e electrical power supply or UPS.
	plies a datacentre like envi rack mount facilities, stable	ronment : stable and cooled environment, clean room, e electrical power supply or UPS.
	plies a datacentre like envi rack mount facilities, stable Environment requirements room temperature	ronment : stable and cooled environment, clean room, e electrical power supply or UPS. <u>s are :</u> 15°C ~ 25°C
	plies a datacentre like envi rack mount facilities, stable Environment requirements room temperature dust-free condition 1	ronment : stable and cooled environment, clean room, e electrical power supply or UPS. s are : 15°C ~ 25°C 30mg/m3 of sand
	plies a datacentre like envi rack mount facilities, stable Environment requirements room temperature dust-free condition 1 dust-free condition 2	ronment : stable and cooled environment, clean room, e electrical power supply or UPS. s are : 15°C ~ 25°C 30mg/m3 of sand 0.2mg/m3 of dust
	plies a datacentre like envi rack mount facilities, stable Environment requirements room temperature dust-free condition 1 dust-free condition 2 dust-free condition 3	ronment : stable and cooled environment, clean room, e electrical power supply or UPS. <u>5 are :</u> 15°C ~ 25°C 30mg/m3 of sand 0.2mg/m3 of dust 1.5mg/(m2h) of sedimentation
	plies a datacentre like envi rack mount facilities, stable Environment requirements dust-free condition 1 dust-free condition 2 dust-free condition 3 proper chassis/rack ground	ronment : stable and cooled environment, clean room, e electrical power supply or UPS. <u>s are :</u> 15°C ~ 25°C 30mg/m3 of sand 0.2mg/m3 of dust 1.5mg/(m2h) of sedimentation Must be grounded

- Deployment detailed procedure is needed to achieve a successful installation, including physical cabling, system prerequisites, access. This procedure is very useful for the team deploying the solution. Support from QKD expert is also a must to ensure a quick and efficient deployment.
- Operations team need specific support and expertise for the QKD maintenance. In case of QKD sync issue or key exchange issue, for example, QKD experts support is required to go back to a normal functioning.
- Monitoring of the QKD key exchange may be a challenge to be able to integrate it in a Telco environment. We encountered several changes in the QKD software release which did not allowed a proper SNMP management though a telco NMS. We managed to successfully confirm the stability of the links from the customer service perspective.

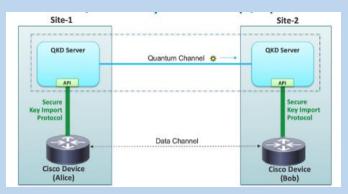
Changes necessary to already deployed infrastructure:

UC Initial proposal : 5 power stations connected thought a telecom MPLS network

The initial version planned to connect 5 power stations with QKD. We discovered that QKD is not compliant with an active network, since QKD cannot "pass hardware and equipements". QKD key exchange need dedicated fibers end to end between the devices.

herefore we evolved the design to a point to point QKI	
UC2 version 2 : point to point link versior	for SmartGrid
ID: 02 Smart Grid Target sector: Critical Infrastructure	Site-1 Site-2
Country: CH Main site: Geneva	Secure Reg Import Protection Cisco Device Cisco Device
Description from Proposal: For the 7 years to come, SIG will create a Smart grid network to connect its power stations (over 800) in Ge- neva. Each power station will be connected in p2p fash- ion to the SIG Telecom optical fibre network and to SIG's Electricity NOC using L2/L3 transport services. To highly secure data transmission/detection intrusion (hackers taking control of the electricity distribution network), SIG would like to test Quantic technology in a real production and operational environment. Towards this end, SIG will connect two power stations to the QKD testbed and asses available QKD technolo- gies and services offered by our consortium.	Image credit: Cisco
	Role/Function
Partner	
Partner ID Quantique (IDQ)	QKD System provider

During the use case preparation we encountered physical environment challenges : temperature, rack space, cleanliness of the space.


The power stations have very different environment from a datacenter. There is not air conditioning, and no racks mount. QKD needs a proper datacenter like environment with a cooled room, clean environment to manipulate the fibers and rack space. QKD key exchange is extremely sensitive to the environment it runs thought.

The use case was nevertheless interesting in terms of vendors involved : Key exchange with Cisco business equipment used in Geneva for delivering MPLS services.

Therefore we worked on a new version of the use case that would meet the physical environment needs and propose a benefit to the project.

UC2 version 3 : demo version : point to point MPLS business customer link

We prepared a use case for a customer point to point link for the last mile in Geneva, using Cisco equipment on both end that we install on customer Telecom premises, with Datacenter standards.

- We managed to configure and run the use case on a SIG business customer point to point link on dedicated fiber successfully.

Target sector demonstrated impact:

- Business customer last mile link successfully ran with QKD key

Estimated cost of implementation:

- Cisco hardware is standard running IOS-XE
- QKD hardware and software : 100K EUR

Use case design description hardware :

- 2 QKD hardware equipment running Cerberis3
- 2 Cisco hardware running IOS- XE >=17.2
- QKD NMS system to configure the QKD hardware (requirements : Linux server running either CentOS7 (not 8) or Ubuntu20. The newest management software (QMS) ideally should have 16G RAM and 8 CPU cores and 100G disk space).

Configuration and monitoring details :

- We monitored the customer link stability in terms of traffic and tunnel stability.

Below the checks for operations :

QKD enabled check

```
openqkd_router1#sh crypto ikev2 sa detailed
IPv4 Crypto IKEv2 SA
Tunnel-id Local Remote
```

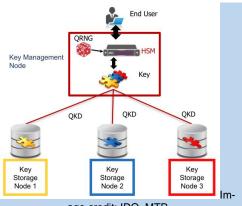
fvrf/ivrf

Status

10.1.0.1/500 10.1.0.2/500 6 none/none READY Encr: AES-CBC, keysize: 256, PRF: SHA512, Hash: SHA512, DH Grp:19, Auth sign: PSK, Auth verify: PSK, QR Life/Active Time: 3000/615 sec CE id: 0, Session-id: 2 Status Description: Negotiation done Local spi: 08D3B120306CF5DE Remote spi: 6F39A6E05DAB40E0 Local id: 10.1.0.1 Remote id: 10.1.0.2 Local req msg id: 6 Remote reg msg id: 0 Local next msg id: 6 Local req queued: 6 Local window: 5 Remote next msg id: 0 Remote req queued: 0 Remote window: 5 DPD configured for 0 seconds, retry 0 Fragmentation not configured. Dynamic Route Update: enabled Extended Authentication not configured. NAT-T is not detected Cisco Trust Security SGT is disabled Initiator of SA : Yes Local Sys Id: encASIG Remote Sys Id: encBSIG IPv6 Crypto IKEv2 SA QKD crypto tunnel statistics openqkd router1#sh crypto ipsec sa interface: Tunnel0 Crypto map tag: Tunnel0-head-0, local addr 10.1.0.1 protected vrf: (none) local ident (addr/mask/prot/port): (10.1.0.1/255.255.255.255/47/0) remote ident (addr/mask/prot/port): (10.1.0.2/255.255.255.255/47/0) current peer 10.1.0.2 port 500 PERMIT, flags={origin_is_acl,} 17049975, #pkts encrypt: 17049975, #pkts digest: 170499 #pkts #pkts compressed: 0, #pkts decompressed: 0 #pkts not compressed: 0, #pkts compr. failed: 0 #pkts not decompressed: 0, #pkts decompress failed: 0 #send errors 0, #recv errors 0 QKD crpto tunnel statistics details openqkd_router1#sh crypto ipsec sa detail interface: Tunnel0 Crypto map tag: Tunnel0-head-0, local addr 10.1.0.1 protected vrf: (none) local ident (addr/mask/prot/port): (10.1.0.1/255.255.255.255/47/0) remote ident (addr/mask/prot/port): (10.1.0.2/255.255.255.255/47/0) current peer 10.1.0.2 port 500 PERMIT, flags={origin_is_acl,} pkts encaps: 17049975, #pkts encrypt: 17049975, #pkts digest: 1704997 pkts decaps: 16042625, #pkts decrypt: 16042625, #pkts verify: 1604262

KPI Groups (Unique and Sorted)	KPI name	
Rates	Key creation rates	Not measures, since link point to point.
	Key consumption rates	Key required each 3000 sec
	Key transmission rate	Not measures, since link point to point.
	QBER / excess noise	N/A
Throughput	Data Transactions	N/A
	Data Throughput	Customer standard traffic of 50 top 100 Mbps
Latency	Quantum network latency	3ms on Geneva local loop. QKD did not impacted the latency of AES 256 encrypted on Cisco IOS- XE cisco equipment
	classical network latency	3ms on Geneva local loop.
Compatibility with existing Infrastructure	Modularity	Compliant with Datacenter environ- ment or equivalent.
	Equipment Size	Half rack to be provided
	Deployment (Size & Automation)	Rack space to be planned in ad- vance. QKD evolution tend to lower down Rack units, but not the needed physical environment.
	Scalability	N/A
Security & certifica- tion	Security & certification	Not measured, only stability of the link was measured.
Resistance to Failure & Link stability	Resistance to Failure	Not measured, only stability of the link was measured.
	Link stability	Link has been up and running fully for 1 month.

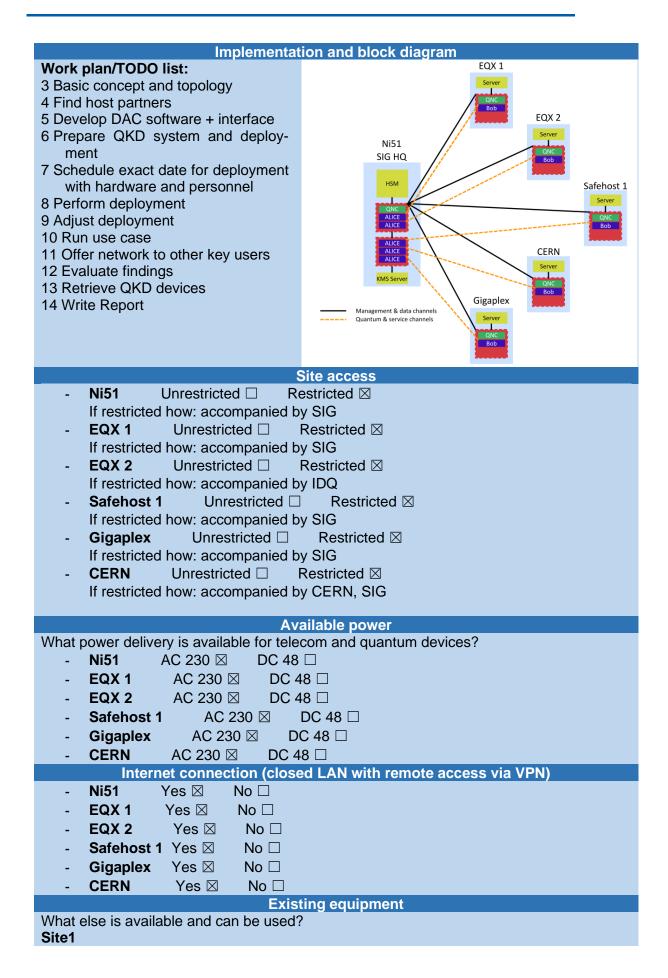
3.2 Use Case 03


ID: 03 Quantum Vault

Target sector: Finance (Digital Asset Custody,
DAC)Country:Main site: Geneva

СН

Description from Proposal:


The use of crypto assets is currently increasing at an exponential rate. The secure generation, backup and storage (custody) of these crypto assets is an important issue. A modern solution of storing these assets is based on secret sharing protocols. This use case will exploit QRNGs for the so-called token generation in the key management node (KMN) and QKD for securing the data exchange with three key storage nodes (KSN). Each key storage node will only contain a piece of the original key in a way that you will need access to at least three nodes to reconstruct the key.

age credit: IDQ, MTP

construct the key.			
Partner	Role/Function		
ID Quantique (IDQ)	QKD System provider		
Mt Pelerin (MTP)	Service provider		
Services Industriels de Genè	ève (SIG) OTN provider and rack provider		
Poznan Supercomputing and N	letw. Center Rack provider		
(PSNC)			
External partner: ATC	DS HSM provider		
Impact			
Target sector planned impact:	Planned KPI demonstrations:		
Securing the storage of digital	1 Number of transaction signature per second		
assets.	2 Latency of key dissemination		
Companies attracted through	3 Latency of key reconstruction		
use case:	4 Rate of key reconstitution failure when the system is		
- Banks, DAC service pro-	overloaded		
vider	5 Key loss probability (probability of losing 3 pieces of		
	the key which would lead to a loss of assets)		

- Site2		
-		
Site3		
- Server		
Manufacturers and Devices		
- MTP o HSM (from ATOS)		
 5x Raspberry Pi 4 (Server) 		
 IDQ KMS Server 		
QKD Systems		
Manufacturers and Devices - IDQ		
- IDQ ○ IDQ-02		
o IDQ-03		
 IDQ-04 IDQ-05 		
○ IDQ-06		
Link details List of links (see database):		
• GVA: SIG HQ – Gigaplex		
GVA: SIG HQ - Safehost 1		
 GVA: SIG HQ – CERN GVA: SIG HQ - Equinix 2 		
• GVA: SIG HQ - Equinix 1		
Every link has two dark fibers. The six-node network shares a proper LAN that is accessible via a VPN tunnel.		
Planned deployments		
All links will be deployed in January 2020. The use case is planned to run for ten months.		
Interfaces between layers:		
ETSI 014 interface between QKD and MTP HSM/Server Results		
Lessons learned:		
Changes necessary to already deployed infrastructure:		
KPI demo report:		
Target sector demonstrated impact:		
- Estimated cost of implementation: - QKD systems: 475 k€ - HSM: 10 k€		
 Personnel for installation and maintenance: 30 k€ 		
 Other equipment used: 5 k€ Total cost: 520 k€ 		
- Total cost: 520 k€ - Target costs: 200 k€		

KPI Groups (Unique and Sorted)	KPI name	
Rates	Key creation rates	\approx 4 keys per second (1 key = 256 bits)
	Key consumption rates	Depending on test configuration; could be arbitrarily high (e.g., 100 keys per second)
	Key transmission rate	Depending on the QKD-internal buffers. If filled, transmission rate can be as high as consumption rate for a limited time even if the con- sumption rate exceeds the creation rate
	QBER / excess noise	Typically, between 1% and 2%
Throughput	Data Transactions	Data was encrypted with OTP method, hence the data transactions equal the key consumption rate
	Data Throughput	Each transaction consists of a 256 bit string.
Latency	Quantum network latency	No latency if key request rate was on average at most 4 keys per second
	classical network latency	Distribution and recovery: 1.5s and 0.25s respectively. (Distribution was slower due to consistency checks)
Compatibility with existing Infrastructure	Modularity	QKD and key consumers are in- teroperable
	Equipment Size	13u at central node, 6u at peripheric nodes
	Deployment (Size & Automation)	More attention on
	Scalability	Can be embedded in future shared QKD networks of datacentre inter- connect links
Security & certifica- tion	Security & certification	ITS thanks to OTN
Resistance to Failure & Link stability	Resistance to Failure	Shamir Secret Sharing exhibits re- dundancy per design
	Link stability	After setup, no issues with the link stability.
Use Case or Testbed specific features	Use Case or Testbed specific features	Use case testing operating in several contemporary datacentres, which was a good experience for all partic- ipants

3.3 Use Case 12

ID: 12			
QKD in Cloud Datacenters			
Target sector: Datacenters	_ X		
R Main site: Athens leaf switch			
Description from Proposal:			
Data security and privacy are among the top conce in the datacenter environment. The financial cost of a security breach can be substant especially when customer data is exposed. Sensitive data has historically been protected by segmentation and firewalls with intrusion prevent	tial, IP		
systems that were simpler and faster than encrypti However, this model is now changing. As workloads the corporate data center begin to migrate to the pul- cloud, the need to encrypt any data traversing the r work becomes foundational. Hyperscale cloud serv providers are increasingly enabling encryption acre their massive DCI networks to meet customer expect	on. s in blic net- rice oss Quantum Device		
tions. In order to eliminate vulnerabilities in the public clo infrastructure all segments of the cloud datacenter r work will need to be fortified with encryption. New crypto acceleration devices are becoming ava	net-		
ble that mitigate the performance degradations posed by encryption, thus laying inroads to the bro introduction of encryption in the datacenter.			
The generalized introduction of encryption in the clo datacenter can offer additional benefits in the flexib and efficiency of the cloud infrastructure. If the encr tion system being deployed can span multiple hyb clouds, it allows the IT team to think about clou simply as pools of capacity. End-to-end connection will be deployed using commercial datacenter network ing equipment working in liaison with QKD infrastr ture and will be evaluated in a realistic datacenter st ting.	ility yp- orid uds ons ork- ruc- set-		
Partner	Role/Function		
Mellanox Technologies (MLNX)	Testbed provider		
Mellanox Technologies (MLNX)	End user		
ID Quantique (IDQ)	QKD System provider		
Toshiba (TREL)	QKD System provider		

	Impact	
Target sector planned impact:-Provide true randomness to classical security in the DC-Provide end to end QKD inside DCCompanies attracted through use case:- Mellanox, DC users/own-	 Planned KPI demonstrations: Providing a key rate high enough to support apps QKD-exchanged key delivery latency to encryptors Compliance with temperature and cost targets in the datacenter Stability of the link 	
ers		
	Implementation	
Work plan:		
QKD 1. Software on MLNX NICs for 2. Key management framework 3. Integration of QKD devices of QRNG 4. Software on MLNX NICs for	n the MLNX testbed	
5. Identify QRNGs with USB int		
6. Demonstrate high performan	ce classical security with random numbers	
	Block diagram	
Datacenter A End point	Quantum Optics Datacenter B End point QKD H/w Deployment ETSI Q14 interface	
Key Cache Orchestrator (KCO)	Key Cache Orchestrator (KCO) Unifrastructure Service (KCO) Unifrastructure Service Openstack. Orchestrator Key-Caching Layer	
Key Exchange Orchestrator (KEO)	Key Exchange Orchestrator (KEO) Infrastructure/Container Service Orchestrator openstack Orchestrator Key Provisioning layer	
CryptoApp Datapath	CryptoApp Datapath Agent IPSec/VPN QKD-enabled CryptoApps	
	Site access	
- Site1 Unrestricted ⊠ Restricted □ If restricted how:		
	Available power	
What power delivery is available for t	elecom and quantum devices?	
- Site2 AC 230 🗆 D0	C 48 C 48 C 48 C 48 Internet connection	
- Site1 Yes ⊠ No 🗆		

Existing equipment
What else is available and can be used?
Site1
- Bluefield SmartNICs
- Key management infrastructure (in progress)
- IDQ Cerberis 3 (C-band) Site2
Sitez
- -
Site3
Encryptors
Manufacturers and Devices
 MLNX Bluefield SmartNIC
QKD Systems
Manufacturers and Devices
 IDQuantique (IDQ Cerberis 3, C-Band)
o Toshiba (Multiplexed, O-Band)
Link details
Please fill out the following list for each link (physical connection between two nodes):
Link1 (QRNGs)
 Classical encrypted link between the two Mellanox NICs
- USB for QRNG to host communication Link2 (QKD system from Civiq)
 IPsec tunnel between MLNX endpoints using the QKD exchanged keys
- Dark fiber for QKD channel
Co-existence for the sync & user channel (if exists) Planned deployments
Deployment1 (QRNGs)
 Classical link and security protocols between two Mellanox NICs Deployment2 (QKD system from Civiq)
- Link 1: 2x Bluefield SmartNICs, IDQ Cerberis 3 (C band)
- IPsec tunnel between two MLNX endpoints using the QKD exchanged keys
Interfaces between layers:
- USB interface for QRNG connection
- ETSI 14 interface for keys delivery
- Key management infrastructure
Results
Lessons learned:
Changes necessary to already deployed infrastructure:

KPI demo report:		
- Target sector demonstrated impact:		
Estimated cost of implementation:		
-		
	Impact	
Target sector planned impact: - Data Center	Achieved KPI demonstrations:	
- Data Center	- Key rate: 4 keys/s (256-bit keys)	
	- Latency: 100 ms	
Companies attracted through		
use case: - Mellanox/ Nvidia	- Stability: Key error rate = $\sim 10^{-2}$	
- Mellanox/ Nvidia		
	me of demonstration	
Deployment: - Link 1: 2x Bluefield SmartNI	Cs. IDO Cerberis 3 (C band)	
	LNX endpoints using the QKD exchanged keys	
Time of demonstration:		
- June 2021 – Dec 2021		
	Results	
Lessons learned:	Noodino	
Changes necessary to already deployed infrastructure:		
 Allocate space in the Racks for the QKD equipment 		
Target sector demonstrated impact:		
- Replaced IKE with a safer alternative		
- Estimated cost of implementation		
-		
Further comments:		
-		

KPI Groups (Unique and Sorted)	KPI name	
Rates	Key creation rates	4 keys/s (256-bit keys)
	Key consumption rates	4 key/s
	Key transmission rate	4 key/s
	QBER / excess noise	
Throughput	Data Transactions	
	Data Throughput	5 GB/s
Latency	Quantum network latency	100ms (to get the keys from the quantum device)
	classical network latency	10 us
Compatibility with existing Infrastructure	Modularity	
	Equipment Size	Should be miniaturized
	Deployment (Size & Automation)	Point to point servers
	Scalability	
Security & certifica- tion	Security & certification	
Resistance to Failure & Link stability	Resistance to Failure	Ok
	Link stability	Ok
Use Case or Testbed specific features	Use Case or Testbed specific features	

3.4 Use Case 14

ID: 14 Secured Datacenter Interconnection

Target sector: Any sector using Datacenters (Telecom)

Country: Main site: Geneva CH

Description from Proposal:

The use of QKD combined with network encryption allows to propose quantum-safe connectivity. Indeed, today the private key exchange for AES-256 encryption uses RSA, Diffie-Hellman or Elliptic Curve which will be broken by quantum computers using Shor Algorithm. QKD provides the same secure key simultaneously in two locations where the data is encrypted / decrypted. This use case shows how IDQ QKD can be combined with ADVA FSP3K encryption using the standard ETSI interface (REST API QKD 014) in the case of datacenter interconnect, exchanging 10 Gbps of encrypted data.

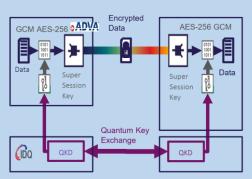
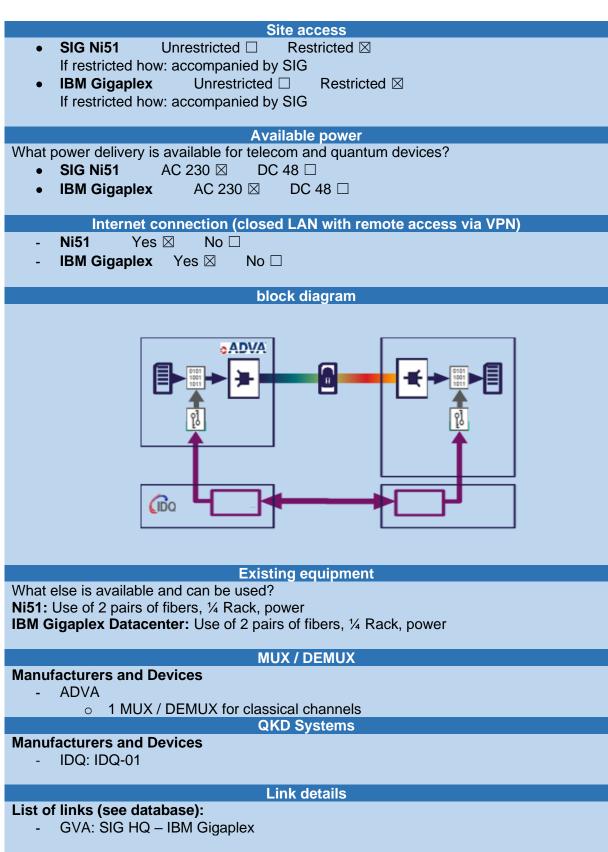



Image credit: IDQ, ADVA

Partner	Role/Function	
ID Quantique (IDQ)	QKD System provider	
ADVA (ADV)	Service provider	
Services Industriels de Genè		
	Impact	
Target sector planned impact:	Planned KPI demonstrations:	
Telecom Datacenter Intercon-	4 Measure Latency impact generated by Encryption +	
nect.	QKD	
	5 Measure stability of the link	
Companies attracted through	6 Best practise about key rotation update	
use case:	7 ADVA service continuity when the QKD link is down or	
 Service Providers 	the key exchange rate is too low compared to key	
- Large companies with	request rate	
private Datacenters		
 Cloud Providers 		
Impler	nentation and block diagram	
Work plan/TODO list:		
6 Link topology and design		
7 Prepare QKD system and deplo	yment	
8 Integrate the QKD pair with AD	VA FSP3K	
9 Schedule exact date for deployr	ment with hardware and personnel	
10 Perform deployment		
11 Adjust deployment		
12 Run use case		
13 Analyze link performance		
14 Evaluate findings		
15 Retrieve QKD devices		
16 Write Report		

A link has two pairs of dark fibers one for the QKD system and one for classical channels.

Planned deployments

QKD and ADVA equipment are produced and available mid-December 2019 and will be installed on site in January 2020. The use case is planned to run for ten months. **Interfaces between layers:**

- ETSI 014 interface between QKD and ADVA FSP3K

Results

Lessons learned:

Changes necessary to already deployed infrastructure:

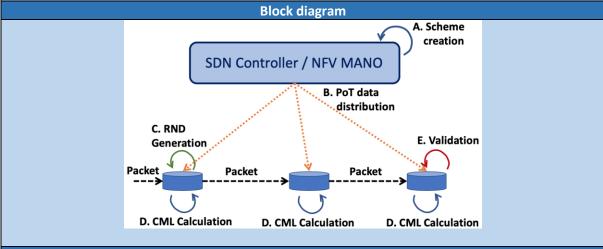
KPI demo report:

Target sector demonstrated impact:

Estimated cost of implementation:

- QKD systems: 95k€
- Personnel for installation and maintenance: 5 k€
- Other equipment used: 25k€
- Total cost: 125 k€
- Target costs: 50 k€

KPI Groups (Unique and Sorted)	KPI name	
Rates	Key creation rates	\approx 4 keys per second (1 key = 256 bits)
	Key consumption rates	1 key every 10 min
	Key transmission rate	1 key every 10 min
	QBER / excess noise	Typically, around 1%
Throughput	Data Transactions	Continuous
	Data Throughput	10 Gbps
Latency	Quantum network latency	No measurable impact
	classical network latency	No measurable impact
Compatibility with existing Infrastructure	Modularity	Interoperability between QKD and encryptor thanks to ETSI 014
	Equipment Size	7u on each site
	Deployment (Size & Automation)	Rack space to be planned in ad- vance. QKD evolution tend to lower down Rack units, but not the needed physical environment.
	Scalability	P2P
Security & certifica- tion	Security & certification	QKD keys combined with legacy key exchange method to encrypt data via AES 256.
Resistance to Failure & Link stability	Resistance to Failure	By default, ADVA FSP3000 con- tinue the data encryption communi- cation using the standard mode DH for key exchange in case of QKD link down.
	Link stability	Up and running for two months without interruption
Use Case or Testbed specific features	Use Case or Testbed specific features	Used in production



3.5 Use Case 15

ID: 15		
Network security and attestation		
Target sector: Telecommunication, Critical		
Infrastructure protection		
Country: SP Main site: Madri	d	
Description from Proposal:		
The ability to guarantee that a g	iven netwoi	
packet has passed through certa		
in a given order is one of the mo		
mechanisms to ensure that the	•	
network are working as expected		
make them resilient against atta		
allows to attest the service or m		
havior in case of legal problems		
be using a novel protocol based		
is currently going through a star		
process at IETF to enforce OPoT	: Ordered	
Proof of Transit		
Partner		Role/Function
idQ		QKD System provider
TREL		QKD System provider
TID		Testbed and use case provider (End user: Telefónica
		Spain)
UPM		SW provider
RM		Testbed provider
Other		QKD experimental System provider
		Impact
Target sector planned im-	Plannod KI	PI demonstrations:
pact:		y indicators: number of OPoT marked packets per sec-
Securing the telecommunica-		d compared to the average network packets processed the network without OPoT.
tion infrastructure, especially		
the virtualized ones by mak-		te test) Inter-provider security
ing sure that service function	- Inc	reased latency (ms).
chains are executed in the		
proper order and without		
skipping crucial steps (e.g.		
passing through a firewall)		
Companies attracted through		
use case:		
 Telefónica de España 		
- BT		
- DT		
- Accenture, Upandrun-		
ning have demon-		
strated interest.		
Implementation		
Work plan/TODO list:		

- 1. Define Service Function Chains according to available connection topology, systems and capabilities
- 2. Prepare QKD systems and SW deployment
- 3. Schedule exact date for deployment with hardware and personnel
- 4. Perform deployment
- 5. Adjust deployment
- 6. Finalize deployment and retrieve devices
- 7. Evaluate findings
- 8. Write Report

Site access

Note: Seven possible places can be used for this test, four of them are in the RM network and they can be accessed with less restrictions and the other three are within the Telefonica production network, with much more restricted access. Ideally, all the seven sites (with a topology that imply seven links -three of them in a star with a central node (UPM-RMCIEMAT, RMCIEMAT-UAM, RMCIEMAT-CSIC), three of them in a ring (Telefonica production network, ALMAGRO-NORTE, AL-MAGRO-CONCEPCION, CONCEPCION-NORTE) and another link connecting both (ring and star) could be used. The RM Network and the Telefonica Network have different access requirements. An initial early deployment (three months) is planned for the demonstration and either network (ring or star) could be selected. If a longer time is afforded and movement of the equipment allowed, both networks can be used. In a late test, planned by the end of the project, since the fiber link connecting both topologies (and providers) is still being commissioned, both networks can be used jointly, demonstrating inter-provider capabilities for the use case. The RM network and the Telefonica production have different access requirements:

- RM Sites Unrestricted □ Restricted ⊠
 If restricted how: RM permission
- Telefónica Production: Unrestricted □ Restricted ⊠ If restricted how: restricted to trained persons only

Restricted access examples: with passport; with short training; with trained person; restricted to trained persons only

	Available power							
Wł	What power delivery is available for telecom and quantum devices?							
	- Site1	AC 230 🗆	DC 48 🗆					
	- Site2	AC 230 🗆	DC 48 🗆					
	- Site3	AC 230 🗆	DC 48 🗆					

				Internet connection			
-	Site1	Yes 🖂	No 🗆				
-	Site2	Yes 🖂	No 🗆				
-	Site3	Yes 🖂	No 🗌				
				Existing equipment			
	else is ava	ilable and c	an be useo	1?			
Site1							
-							
Site2							
- Site3							
Siles							
				Encryptors			
Manuf	acturers	and Device	<u>.</u> S				
mana				wellcome, but not strictly necessary since the required en-			
		cryption ca					
				QKD Systems			
Manuf	acturers	and Devices	5				
-	3 Links i	n first phase	e				
-	7 links ii	n second ph	ase				
				Link details			
Please	fill out th	e following	list for eac	ch link (physical connection between two nodes):			
(all cur	rently ava	ailable links	are listed,	the detailed links/topologies are commented in the "Site Ac-			
	ection)						
Link1:		MCIEMAT					
-		•	-	noderately shared, several lambdas, backup line)			
-	24 Km, 6 dB losses, SMF						
-	Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber						
_	Channel) and occupied wavelengths						
-	Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch						
-	 power of telecom channel needed Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range) 						
Link2: RMCIEMAT-UAM							
-	 Number of parallel fibers:2 (moderately shared, several lambdas, backup line) 						
-		8 dB losses,					
-	Telecom	n connectio	n: Client da	ata rates (1/10/100GB) and format (Ethernet, OTN, Fiber			
	Channe	l) and occup	ied wavel	engths			
-				system (dark/shared); if shared -> wavelength and launch			
	•	of telecom c					
-		-		s of QKD and auxiliary channel (none / wavelength range)			
Link3: RMCIEMAT- RMCSIC - Number of parallel fibers:2 (non-shared)							
-		•	•	on-shared)			
-		3.5 dB losse		the method (4 (40 (400 CP)) and formulat (Ethermotic OTN). Filmer			
-				ata rates (1/10/100GB) and format (Ethernet, OTN, Fiber			
-		l) and occup m link: Fibe		system (dark/shared); if shared -> wavelength and launch			
		of telecom c					
_	•			of QKD and auxiliary channel (none / wavelength range)			
Link4	Link4: RMCSIC-IMDEA NW (shared, several lambdas)						

- Number of parallel fibers:2
- 33 Km, 10 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link5: IMDEANW- URJC

- Number of parallel fibers:2 (shared, several lambdas)
- 22.5 Km, 6 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link6: URJC-RMCIEMAT

- Number of parallel fibers:2 (shared, several lambdas)
- 40 Km, 12 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link7: ALMAGRO-NORTE

- Number of parallel fibers:2 (non-shared)
- 3.9 Km, 8.5 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

-

Link8: ALMAGRO-CONCEPCION

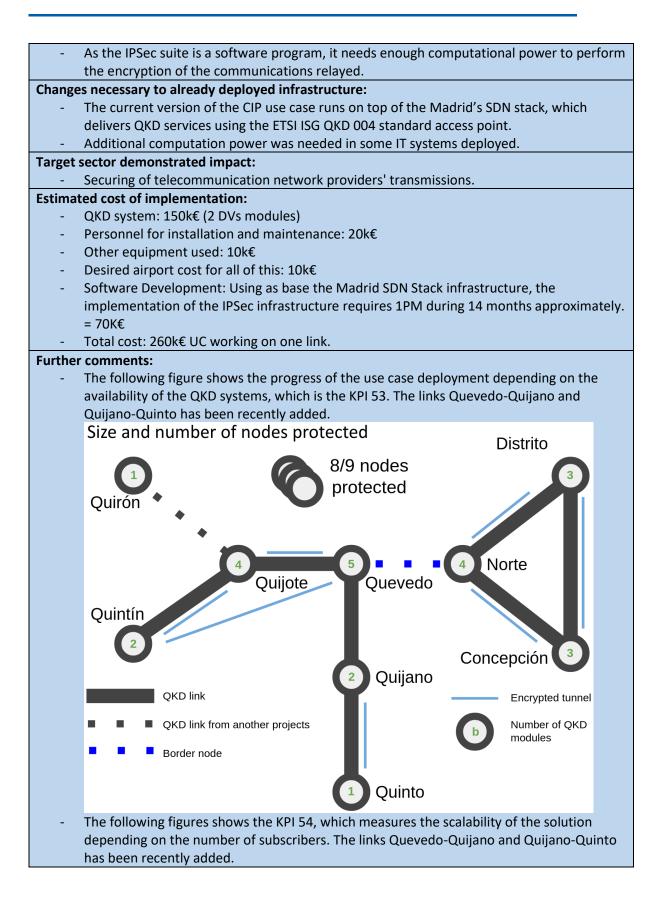
- Number of parallel fibers:2 (non-shared)
- 6.4 Km, 8 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link9: CONCEPCION- NORTE

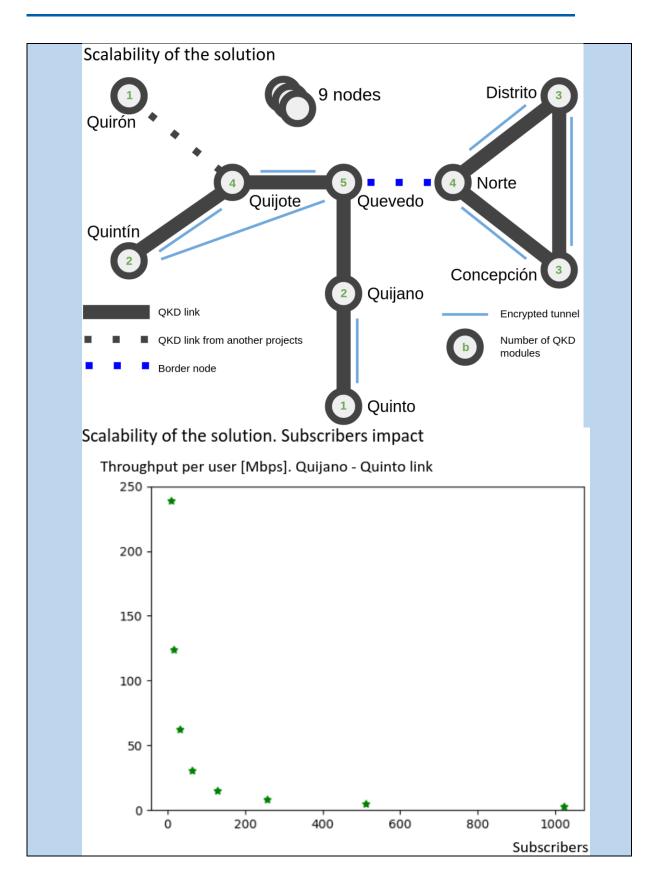
- Number of parallel fibers:2 (non-shared)
- 5 Km, 7 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths

- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

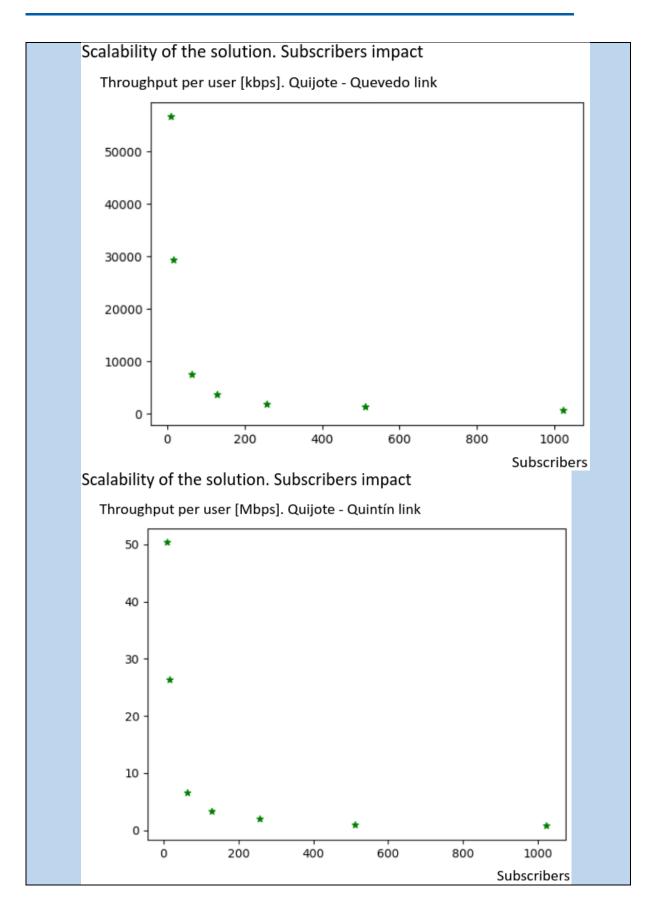
Planned deployments

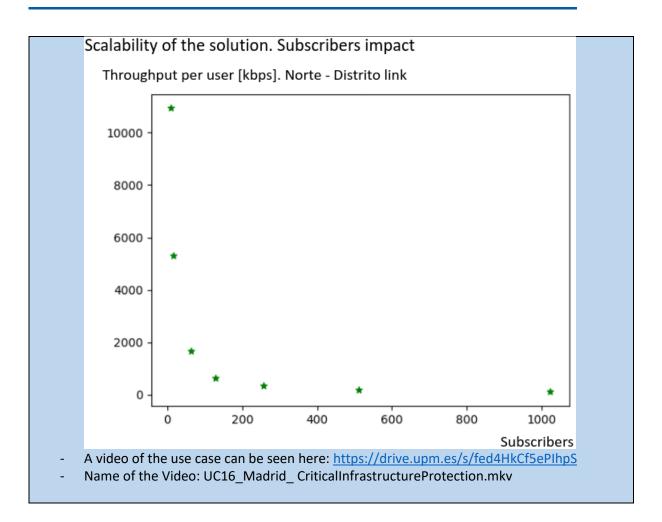

First phase deployment: three Links, May-Jul 2020

- Link1, QKDSystem1, May 2020 Jul 2020
- Link2, QKDSystem2, May 2020 Jul 2020
- Link3, QKDSystem3, May 2020 Jul 2020
- Second phase deployment (with inter-provider demonstrations): Seven links, May-Aug 2022.


Interfaces between layers:

- Preferable 004 (because of QoS and expected latencies) 014 if 004 is not implemented.


		Impact					
Target	sector planned impact:	Achieved KPI demonstrations:					
-	Any critical infrastructure:	- KPI 53: Size and number of nodes protected.					
	communications, water,	- KPI 54: Scalability of the solution.					
	electricity, etc.						
Compa	anies attracted through use	All the KPIs designed for this UC have been fully achieved.					
case:							
-	Telefónica de España						
-	BT						
-	DT						
-	Accenture						
-	UpAndRunning						
		ime of demonstration					
Deploy	yment:						
-		ation of the Madrid Network: 14 months.					
-	The deployment is based on IP:	•					
	 Around 10 minutes per tunnel link between a pair of trusted nodes. 						
-	Note that this deployment assumes that all the SDN stack of the Madrid Quantum						
	Network is fully deployed and operative.						
-	- All the necessary infrastructure for this UC is ready and fully working, but the current						
		fic, it is generic bulk traffic. In the following months, it is					
		industrial traffic, for example SCADA traffic.					
Time o	of demonstration:						
-	- The first version of the CIP UC based on the IPSec suite was developed on 04/2021.						
	However, several improvements have been made since them.						
-	- This demonstrator is running on the Madrid Network since its first development and it is						
	run periodically, daily or weekly, to measure the network performance.						
-	 This demonstrator can be executed on any set of links of the network with QKD systems available. 						
Lossor	Results						
Lessoi	Lessons learned:						
_	QKD services can be used to provide protection to critical infrastructures. Using a general-purpose technology, such as the IPSec suite, enables tunnelling techniques						
	that transparently transport any type of IP communication based on QKD ITS security.						
_	- Using a software-defined technology, as this specific IPSec suite is, enables a seamless						
	integration with the software-defined QKD nodes of the Madrid network.						



3.6 Use Case 16

ID: 16		
Critical Infrastructure Protection		
Target sector: Critical Infrastructure protection		
Country: SP Main site: Madrid		
Description from Proposal:		
Nowadays, many industrial infrastructures an	re monitore	ed
and managed remotely through the network.	These –	
typically SCADA (Supervisory Control and		
sition) networks - are responsible for infrastr	ructures the	at
control systems ranging from the water suppl		
electrical grid and are, thus, critical to our so	-	
use case intends to demonstrate the securing	of this typ	e
of networks through QKD		
Partner		Role/Function
idQ		QKD System provider
TREL		QKD System provider
TID		Testbed and use case provider (Enduser: Te-
		lefónica Spain)
UPM		SW provider
RM		Testbed provider
Other		QKD experimental System provider
	Impact	
Target sector planned impact: Planne		nonstrations:
o i i		
Securing critical infrastructures has		number of nodes protected,
		ty of the solution
ter, electricity, etc		
Companies attracted through use		
case:		
- Telefónica de España		
- BT		
- DT		
- Accenture, UpAndRunning		
	plementat	ion
Work plan/TODO list:		
9. Define control structure according to	o available	connection topology, systems and capabili-
ties		
10. Prepare QKD systems and SW deplo	yment	
11. Schedule exact date for deployment	t with hard	ware and personnel
12. Perform deployment		
13. Adjust deployment		
14. Finalize deployment and retrieve devices		
15. Evaluate findings		
16. Write Report		
Block diagram		m
	Site access	

Note: Nine possible places can be used for this test, six of them are in the RM network and they can be accessed with less restrictions and the other three are within the Telefonica production network, with much more restricted access. Ideally, all the sites (with a topology that imply seven links -three of them in a star with a central node and several hops in one of the branches(UPM-RMCIEMAT, RMCIEMAT-UAM, RMCIEMAT-CSIC, CSIC-IMDEANW, IMDEANW-URJC), three of them in a ring (Telefonica production network, ALMAGRO-NORTE, ALMAGRO-CONCEPCION, CONCEP-CION-NORTE) and another link connecting both (ring and star) could be used. An initial early deployment (three months) is planned for the demonstration and either network (ring or star) could be selected. If a longer time is afforded and movement of the equipment allowed, both networks can be used. In a late test, planned by the end of the project, since the fiber link connecting both topologies (and providers) is still being commissioned, both networks can be used jointly, demonstrating inter-provider capabilities for the use case. The RM network and the Telefonica production have different access requirements:

- **RM Sites** Unrestricted □ Restricted ⊠ If restricted how: RM permission
- Telefónica Production: Unrestricted □ Restricted ⊠ If restricted how: restricted to trained persons only

Restricted access examples: with passport; with short training; with trained person; restricted to trained persons only

Available power
What power delivery is available for telecom and quantum devices?
- Site1 AC 230 🗆 DC 48 🗆
- Site2 AC 230 🗆 DC 48 🗆
- Site3 AC 230 🗆 DC 48 🗆
Internet connection
- Site1 Yes 🗌 No 🗌
- Site2 Yes 🗌 No 🗌
- Site3 Yes 🗆 No 🗆
Existing equipment
What else is available and can be used? Site1 Site2 Site3 Consumble and can be used?
Encryptors Manufacturers and Devices
 Encryptors would be welcome, but not strictly necessary since the required en- cryption can be done in SW.
QKD Systems
Manufacturers and Devices
o 3 Links first phase
 7 links second phase
Link details
Please fill out the following list for each link (physical connection between two nodes):

(all currently available links are listed, the detailed links/topologies are commented in the "Site Access" section)

Link1: UPM – RMCIEMAT

- Number of parallel fibers:2 (moderately shared, several lambdas, backup line)
- 24 Km, 6 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link2: RMCIEMAT-UAM

- Number of parallel fibers:2 (moderately shared, several lambdas, backup line)
- 24 Km, 8 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link3: RMCIEMAT- RMCSIC

- Number of parallel fibers:2 (non-shared)
- 6.5 Km, 3.5 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link4: RMCSIC-IMDEA NW (shared, several lambdas)

- Number of parallel fibers:2
- 33 Km, 10 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link5: IMDEANW- URJC

- Number of parallel fibers:2 (shared, several lambdas)
- 22.5 Km, 6 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link6: URJC-RMCIEMAT

- Number of parallel fibers:2 (shared, several lambdas)
- 40 Km, 12 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link7: ALMAGRO-NORTE

- Number of parallel fibers:2 (non-shared)
- 3.9 Km, 8.5 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

-Link8: ALMAGRO-CONCEPCION

- Number of parallel fibers:2 (non-shared)
- 6.4 Km, 8 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link9: CONCEPCION- NORTE

- Number of parallel fibers:2 (non-shared)
- 5 Km, 7 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

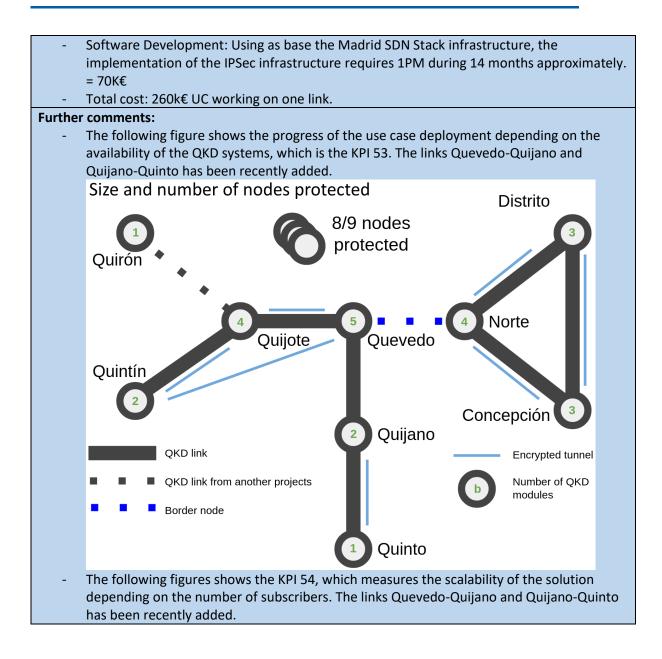
Planned deployments

First phase deployment: three Links, May-Jul 2020

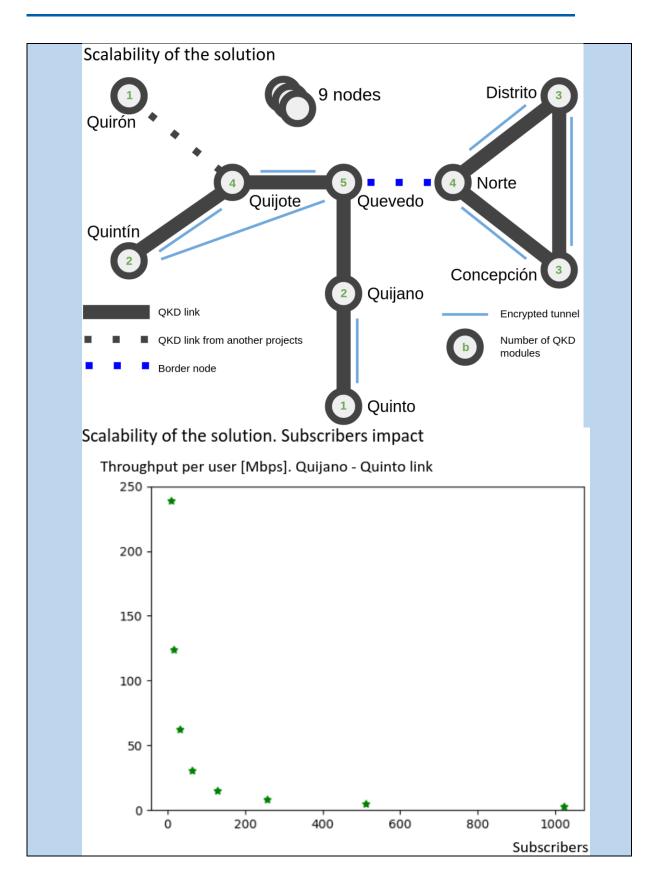
- Link1, QKDSystem1, May 2020 Jul 2020
- Link2, QKDSystem2, May 2020 Jul 2020
 - Link3, QKDSystem3, May 2020 Jul 2020

Second phase deployment (with inter-provider demonstrations): Seven links, May-Aug 2022.

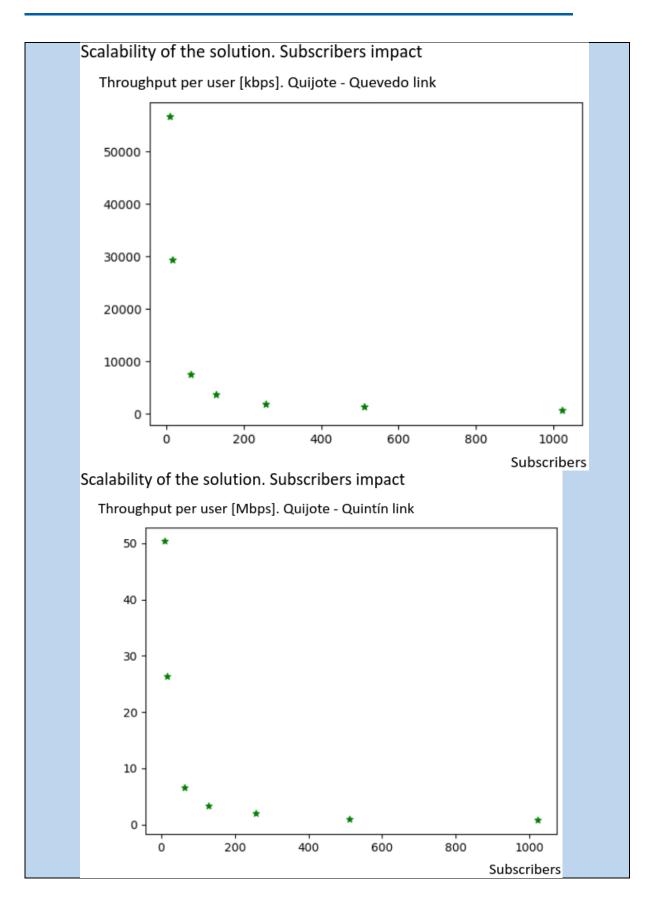
Interfaces between layers:

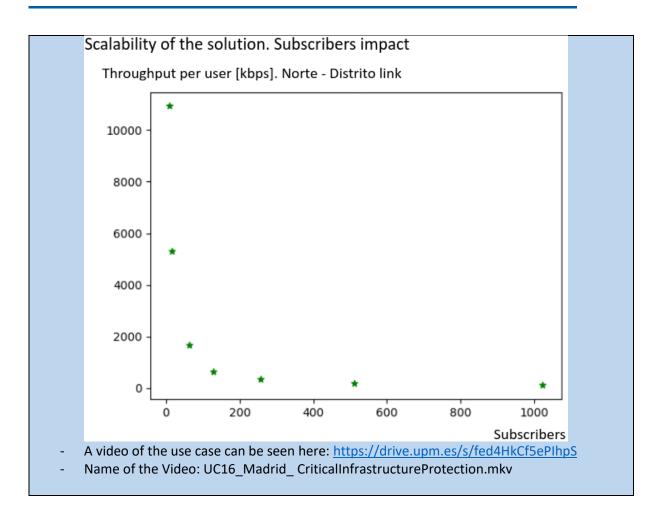

Preferable 004 (because of QoS and expected latencies) 014 if 004 is not implemented.

Impact	
Target sector planned impact:	Achieved KPI demonstrations:



-	Any critical infrastructure:	- KPI 53: Size and number of nodes protected.	
	communications, water,	 KPI 54: Scalability of the solution. 	
	electricity, etc.		
		All the KPIs designed for this UC have been fully achieved.	
Compa	anies attracted through use		
case:			
-	Telefónica de España		
-	BT		
-	DT		
-	Accenture		
-	UpAndRunning		
	Т	ime of demonstration	
Deploy	yment:		
-	Initial development and adapta	ition of the Madrid Network: 14 months.	
-	The deployment is based on IP	Sec suite, which requires:	
	 Around 10 minutes per 	tunnel link between a pair of trusted nodes.	
-	Note that this deployment assu	imes that all the SDN stack of the Madrid Quantum	
	Network is fully deployed and o		
-		for this UC is ready and fully working, but the current	
	•	fic, it is generic bulk traffic. In the following months, it is	
		industrial traffic, for example SCADA traffic.	
Time o	of demonstration:		
_	The first version of the CIP UC	pased on the IPSec suite was developed on 04/2021.	
	However, several improvement	•	
_	•	n the Madrid Network since its first development and it is	
	-	y, to measure the network performance.	
_		uted on any set of links of the network with QKD systems	
	available.		
		Results	
Lesson	ns learned:	ACSUITS	
-		ovide protection to critical infrastructures.	
_	•	ology, such as the IPSec suite, enables tunnelling techniques	
	that transparently transport any type of IP communication based on QKD ITS security.		
_	- Using a software-defined technology, as this specific IPSec suite is, enables a seamless		
	integration with the software-defined QKD nodes of the Madrid network.		
_	-	program, it needs enough computational power to perform	
_	the encryption of the communi		
Chang	es necessary to already deploye	•	
Chang		use case runs on top of the Madrid's SDN stack, which	
-		•	
	delivers QKD services using the ETSI ISG QKD 004 standard access point.		
Taraat	- Additional computation power was needed in some IT systems deployed.		
Target	sector demonstrated impact:	notwork providers' transmissions	
-		network providers' transmissions.	
Estima	ated cost of implementation:	hulos)	
-	QKD system: 150k€ (2 DVs mod	•	
-	Personnel for installation and r		
-	Other equipment used: 10k€	in 1010	
-	Desired airport cost for all of th	IIS: TOKE	


OPEN 🗇 QKD



3.7 Use Case 17

ID: 17		
QKD as a Cloud Service		
Target sector: Secure cloud servic		
Country: SP Main site: Madrid		
Description from Proposal:		
Several cloud datacenters will be	•	Secure Communication for Customer Blue
QKD. Instead of using directly th		Distributed Service Management
crypt all the traffic, as has been de		En User Internoo (AP1 alfa Web)
cases, here the QKD systems will	-	
in the cloud infrastructure to prov	•	
as a service. In this way, client ap	-	Resource Pool Besource Pool
request keys to encrypt only the d		
it, thus optimizing the infrastructu		g
QKD available to all users of the		
many business, including banks, a		Handbirdy zone + (bullecenter +)
their IT services to cloud provide	-	
nificant application. As a starting	• •	
mentation using two OpenStack d two nodes of the network will be	· ·	
it later to more places to study the		•
performance of the network.	e scalability al	
		Role/Function
Partner		Role/Function QKD System provider
		QKD System provider
Partner idQ		QKD System provider QKD System provider
Partner idQ TREL		QKD System provider QKD System provider Testbed and SW provider
Partner idQ TREL TID		QKD System provider QKD System provider
Partner idQ TREL TID UPM		QKD System provider QKD System provider Testbed and SW provider SW provider
Partner idQ TREL TID UPM RM		QKD System provider QKD System provider Testbed and SW provider SW provider Testbed provider
Partner idQ TREL TID UPM RM Target sector planned impact:	Planned KPI	QKD System provider QKD System provider Testbed and SW provider SW provider Testbed provider mpact demonstrations:
Partner idQ TREL TID UPM RM Target sector planned impact: Secure cloud services	Planned KPI - num	QKD System provider QKD System provider Testbed and SW provider SW provider Testbed provider mpact demonstrations: ber of requests served per unit time.
Partner idQ TREL TID UPM RM Target sector planned impact:	Planned KPI - num - Num	QKD System provider QKD System provider Testbed and SW provider SW provider Testbed provider mpact demonstrations: ber of requests served per unit time. ber of users that the infrastructure can serve.
Partner idQ TREL TID UPM RM Target sector planned impact: Secure cloud services Companies attracted through use case:	Planned KPI - num - Num	QKD System provider QKD System provider Testbed and SW provider SW provider Testbed provider mpact demonstrations: ber of requests served per unit time.
Partner idQ TREL TID UPM RM Target sector planned impact: Secure cloud services Companies attracted through use case: - Telefónica de España	Planned KPI - num - Num	QKD System provider QKD System provider Testbed and SW provider SW provider Testbed provider mpact demonstrations: ber of requests served per unit time. ber of users that the infrastructure can serve.
Partner idQ TREL TID UPM RM Target sector planned impact: Secure cloud services Companies attracted through use case:	Planned KPI - num - Num	QKD System provider QKD System provider Testbed and SW provider SW provider Testbed provider mpact demonstrations: ber of requests served per unit time. ber of users that the infrastructure can serve.
Partner idQ TREL TID UPM RM Target sector planned impact: Secure cloud services Companies attracted through use case: - Telefónica de España - BT	Planned KPI - num - Nun - Scal	QKD System provider QKD System provider Testbed and SW provider SW provider Testbed provider mpact demonstrations: ber of requests served per unit time. ber of users that the infrastructure can serve. ability of the solution.
Partner idQ TREL TID UPM RM Target sector planned impact: Secure cloud services Companies attracted through use case: - Telefónica de España - BT - DT	Planned KPI - num - Nun - Scal	QKD System provider QKD System provider Testbed and SW provider SW provider Testbed provider mpact demonstrations: ber of requests served per unit time. ber of users that the infrastructure can serve.
Partner idQ TREL TID UPM RM Target sector planned impact: Secure cloud services Companies attracted through use case: - - BT - DT	Planned KPI - num - Nun - Scal	QKD System provider QKD System provider Testbed and SW provider SW provider Testbed provider mpact demonstrations: ber of requests served per unit time. ber of users that the infrastructure can serve. ability of the solution.
Partner idQ TREL TID UPM RM Target sector planned impact: Secure cloud services Companies attracted through use case: - - BT - DT	Planned KPI - num - Num - Scala Imple e test.	QKD System provider QKD System provider Testbed and SW provider SW provider Testbed provider mpact demonstrations: ber of requests served per unit time. ber of users that the infrastructure can serve. ability of the solution.
Partner idQ TREL TID UPM RM Target sector planned impact: Secure cloud services Companies attracted through use case: - Telefónica de España - BT - DT Work plan/TODO list: 17. Define parameters for th 18. Prepare QKD systems and	Planned KPI - num - Nun - Scal Imple e test. d SW deploym	QKD System provider QKD System provider Testbed and SW provider SW provider Testbed provider mpact demonstrations: aber of requests served per unit time. aber of users that the infrastructure can serve. ability of the solution.
Partner idQ TREL TID UPM RM Target sector planned impact: Secure cloud services Companies attracted through use case: - - BT - DT	Planned KPI - num - Nun - Scal Imple e test. d SW deploym	QKD System provider QKD System provider Testbed and SW provider SW provider Testbed provider mpact demonstrations: aber of requests served per unit time. aber of users that the infrastructure can serve. ability of the solution.

21.	Adi	iust	dep	lo۱	ment
	, .o.j	0.00	acp	,	

- 22. Finalize deployment and retrieve devices
- 23. Evaluate findings
- 24. Write Report

Block diagram

Site access

Note: Nine possible places can be used for this test, six of them are in the RM network and they can be accessed with less restrictions and the other three are within the Telefonica production network, with much more restricted access. Ideally, all the sites (with a topology that imply seven links -three of them in a star with a central node and several hops in one of the branches(UPM-RMCIEMAT, RMCIEMAT-UAM, RMCIEMAT-CSIC, CSIC-IMDEANW, IMDEANW-URJC), three of them in a ring (Telefonica production network, ALMAGRO-NORTE, ALMAGRO-CONCEPCION, CONCEP-CION-NORTE) and another link connecting both (ring and star) could be used. An initial early deployment (three months) is planned for the demonstration and either network (ring or star) could be selected. For this use-case, since Telefónica Cloud services were the main proposers, we would prefer an installation in the Telefónica Ring with just three links. The RM network and the Telefonica production have different access requirements:

- **RM Sites** Unrestricted □ Restricted ⊠ If restricted how: RM permission
- **Telefónica Production:** Unrestricted □ Restricted ⊠ If restricted how: restricted to trained persons only

Restricted access examples: with passport; with short training; with trained person; restricted to trained persons only

Available power
What power delivery is available for telecom and quantum devices?
- Site1 AC 230 🗆 DC 48 🗆
- Site2 AC 230 🗆 DC 48 🗆
- Site3 AC 230 🗆 DC 48 🗆
Internet connection
- Site1 Yes 🗆 No 🗆
- Site2 Yes 🗆 No 🗆
- Site3 Yes 🗆 No 🗆
Existing equipment
What else is available and can be used? Site1
Site2
Site3 -
Encryptors
Manufacturers and Devices
 3 link encryptors
QKD Systems
Manufacturers and Devices

o 3 links

Link details

Please fill out the following list for each link (physical connection between two nodes):

Link1: UPM – RMCIEMAT

- Number of parallel fibers:2 (moderately shared, several lambdas, backup line)
- 24 Km, 6 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link2: RMCIEMAT-UAM

- Number of parallel fibers:2 (moderately shared, several lambdas, backup line)
- 24 Km, 8 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link3: RMCIEMAT- RMCSIC

- Number of parallel fibers:2 (non-shared)
- 6.5 Km, 3.5 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link4: RMCSIC-IMDEA NW (shared, several lambdas)

- Number of parallel fibers:2
- 33 Km, 10 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link5: IMDEANW- URJC

- Number of parallel fibers:2 (shared, several lambdas)
- 22.5 Km, 6 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link6: URJC-RMCIEMAT

- Number of parallel fibers:2 (shared, several lambdas)
- 40 Km, 12 dB losses, SMF

- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link7: ALMAGRO-NORTE

- Number of parallel fibers:2 (non-shared)
- 3.9 Km, 8.5 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link8: ALMAGRO-CONCEPCION

- Number of parallel fibers:2 (non-shared)
- 6.4 Km, 8 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link9: CONCEPCION- NORTE

- Number of parallel fibers:2 (non-shared)
- 5 Km, 7 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Planned deployments

- We have planned a late deployment in the Telefonica production ring: Dec. 2021-Mar. 2022

Interfaces between layers:

- Preferable 004 (because of QoS and expected latencies) 014 if 004 is not implemented.

		Impact
Target	sector planned impact:	Achieved KPI demonstrations:
-	Digital services providers.	- KPI 17: Number of requests served per unit time.
-	Other infrastructure based	 KPI 52: Number of users that the infrastructure
	on data centres, such as HPC	can serve.
	clusters, network operators	 KPI 55: Scalability of the solution.
Compa	anies attracted through use	
case:		All the KPIs designed for this UC have been fully achieved.
-	Telefónica de España	
-	BT	
-	DT	

Time of demonstration

Deployment:

- Initial development and adaptation of the Madrid Network: 7 months.
- The deployment simulates QKD a cloud technology, which requires:
 o Around 10 minutes per deployment in each trusted node involved.
- Note that this deployment assumes that all the SDN stack of the Madrid Quantum Network is fully deployed and operative.

Time of demonstration:

- The first version of the QKD as a cloud service based on a cloud technology was developed on 05/2020. However, several improvements have been made since them.
- This demonstrator was run on the Madrid Network at the month 8.

Results

Lessons learned:

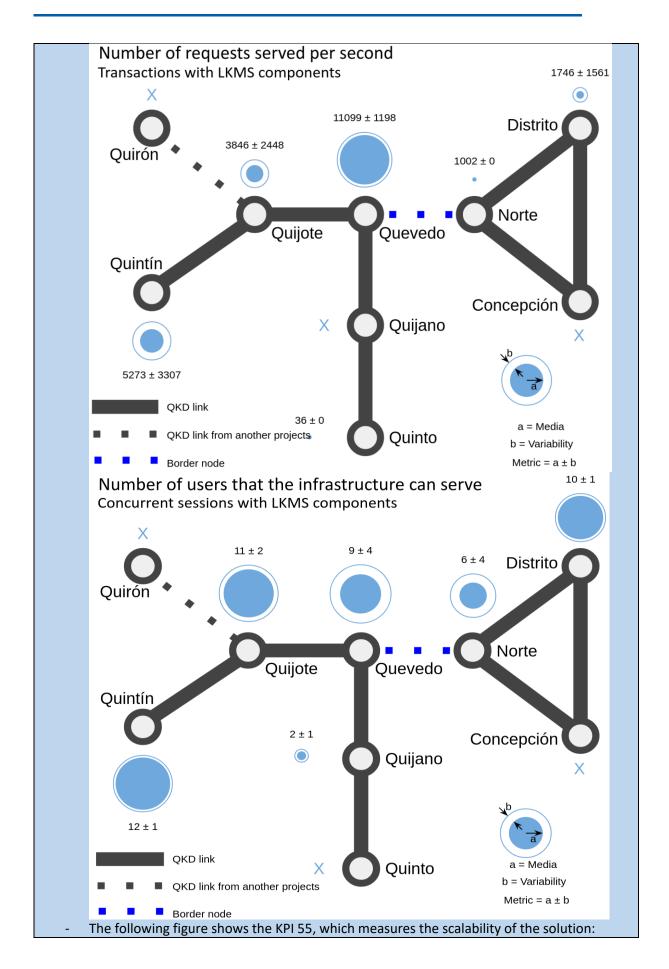
- QKD services can be delivered in a cloud infrastructure as a service to all the hosted application programs running over it.
- As the cloud technology is a software program, it needs enough computational power to perform the encryption of the communications relayed.

Changes necessary to already deployed infrastructure:

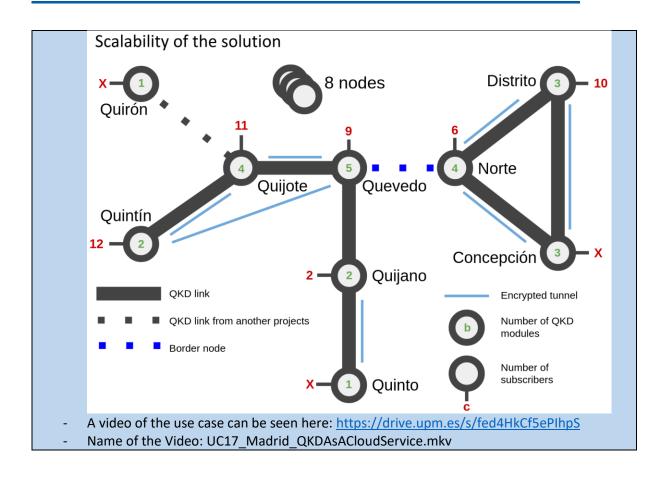
- The current version of the QKD as a cloud service use case runs on top of the Madrid's SDN stack, which delivers QKD services using the ETSI ISG QKD 004 standard access point.
- Additional computation power was needed in some IT systems deployed.

Target sector demonstrated impact:

- Securing the communications of application programs hosted in a cloud infrastructure.


Estimated cost of implementation:

- QKD system: 150k€ (2 DVs modules)
- Personnel for installation and maintenance: 20k€
- Other equipment used: 10k€
- Desired airport cost for all of this: 10k€
- Software Development: Using as base the Madrid SDN Stack infrastructure, the
- implementation of the IPsec infrastructure requires 1PM during 14 months approximately. = 35K€
- Total cost: 225k€ UC working on one link.


Further comments:

- The following figures show the availability of the network to support this use case, known as KPI 17, 52 and 55:

3.8 Use Case 18

ID: 18 e-Health services		
Target sector: Health		
Country: Main site: Madrid SP		
Description from Proposal:		
Securing the access to health data and services an application where security is mandatory. In the use case we intend to demonstrate how to secu- health related data and services. The use case to we are envisioning with a network of hospitals in drid is actually double. On one side it is about the cure transfer of patients' data and also accessin health databases for research purposes (data m ing). These databases can be very large in the co- of personalized medicine, where also genomic of has to be transferred in many cases. However, to is another application that we envision will also the a large impact and it is related to the raise of tech nologies like virtual or augmented reality made p sible also by technologies like 5G networks. The age of these technologies in hospitals will imply plications ranging from simple remote medical a tance to remote surgical operations, where secu- the communications line and low latency will be cial. In this use case we will also have the 5G networks stitute. To connect one of the hospitals to the fib infrastructure 1-2 free space link(s) will be used, this a system from Padova could be used (initial talks with P. Villoresi) and another being also de oped in Madrid (CSIC). It is possible that the Op Calls could be useful in this use case, since hos personnel would also be involved and for the ex- nal Free space link.	is e nat Ma- ase ase- g n- ase ata nere ave n- os- us- ave n- os- us- ap- ssis- ring cru- t- s in- er for	
Partner Role/Function		
idQ QKD System provider		
TREL QKD System provider		
TID	Testbed and SW provider	
UPM	SW provider	
RM	Testbed provider	
Other	QKD Free Space System provider	

	Impact
 Target sector planned impact: Secure and privacy in e-health Companies attracted through use case: Telefónica de España HM Hospitals (a network of 17 hospitals, the second largest private group in Spain) 	 Planned KPI demonstrations: Latency in serving a request. Encrypted data throughput Scalability of the solution.
	Implementation
Work plan/TODO list: 25. Define parameters for the 26. Prepare QKD systems and 27. Schedule exact date for de 28. Perform deployment 29. Adjust deployment 30. Finalize deployment and re 31. Evaluate findings 32. Write Report	SW deployment eployment with hardware and personnel
	Block diagram

Site access

Note: Nine possible places (fiber) can be used for this test, plus 1-2 free space links. Six of them (fiber) are in the RM network and they can be accessed with less restrictions and the other three are within the Telefonica production network, with much more restricted access. Ideally, all the sites (with a topology that imply seven links -three of them in a star with a central node and several hops in one of the branches (UPM-RMCIEMAT, RMCIEMAT-UAM, RMCIEMAT-CSIC, CSIC-IMDEANW, IMDEANW-URJC), three of them in a ring (Telefonica production network, ALMAGRO-NORTE, ALMAGRO-CONCEPCION, CONCEPCION-NORTE) and another link connecting both (ring and star) could be used. The RM Network and the Telefonica Network have different access requirements. An initial early deployment (three months) is planned for the demonstration and either network (ring or star) could be selected. If a longer time is afforded and movement of the equipment allowed, both networks can be used. In a late test, planned by the end of the project, since the fiber link connecting both topologies (and providers) is still being commissioned, both networks can be used jointly, demonstrating inter-provider capabilities for the use case.

For this use case we envision mainly the RM network because of its easier connection with one of the HM hospitals, this link will be made using a free space link with the UPM node. Other could be also possible and also the use of the Telefonica production ring (later, when the RM-Telefónica link would be available, since a Free space link with these is not considered)

The RM network and the Telefonica production have different access requirements:

- **RM Sites** Unrestricted □ Restricted ⊠ If restricted how: RM permission
- **Telefónica Production:** Unrestricted □ Restricted ⊠ If restricted how: restricted to trained persons only

Restricted access examples: with passport; with short training; with trained person; restricted to trained persons only

		Available power	
What power delive	very is available	le for telecom and quantum devices?	
- Site1	AC 230 🗆	DC 48 🗆	
- Site2	AC 230 🗆	DC 48 🗆	
- Site3	AC 230 🗆	DC 48 🗆	
		Internet connection	
- Site1	Yes 🗆 🛛 🛛	No 🗆	
- Site2	Yes 🗆 🛛 🛛 N	No 🗆	
- Site3	Yes 🗆 🛛 🛛 N	No 🗆	
		Existing equipment	
What else is avai	lable and can b	be used?	

Site1
Site2
-
Site3
- Encryptors
Manufacturers and Devices
 3 link encryptors would be needed. QKD Systems
Manufacturers and Devices
o 3 links
Link details
Please fill out the following list for each link (physical connection between two nodes):
(all currently available links are listed, the detailed links/topologies are commented in the
"Site Access" section)
Link1: UPM – RMCIEMAT
 Number of parallel fibers:2 (moderately shared, several lambdas, backup line) 24 Km, 6 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN,
 Fiber Channel) and occupied wavelengths Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and
launch power of telecom channel needed
 Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)
Link2: RMCIEMAT-UAM
- Number of parallel fibers:2 (moderately shared, several lambdas, backup line)
 24 Km, 8 dB losses, SMF Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN,
Fiber Channel) and occupied wavelengths
 Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength
range) Link3: RMCIEMAT- RMCSIC
 Number of parallel fibers:2 (non-shared) 6.5 Km, 3.5 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN,
 Fiber Channel) and occupied wavelengths Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and
launch power of telecom channel needed
 Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link4: RMCSIC-IMDEA NW (shared, several lambdas)

- Number of parallel fibers:2
- 33 Km, 10 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link5: IMDEANW- URJC

- Number of parallel fibers:2 (shared, several lambdas)
- 22.5 Km, 6 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link6: URJC-RMCIEMAT

- Number of parallel fibers:2 (shared, several lambdas)
- 40 Km, 12 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link7: ALMAGRO-NORTE

- Number of parallel fibers:2 (non-shared)
- 3.9 Km, 8.5 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link8: ALMAGRO-CONCEPCION

- Number of parallel fibers:2 (non-shared)
- 6.4 Km, 8 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link9: CONCEPCION- NORTE

- Number of parallel fibers:2 (non-shared)
- 5 Km, 7 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths

- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link10-11: Free space links: Up to two free space links are considered, one would be from U. Padova (initial talks with P. Villoresi) and other from Madrid (CSIC, V. Fernández). These links might need some additional funding from the Open Calls.

Planned deployments

This deployment might need to be coordinated with the Open Calls. Two time slots are considered an early one May-Sept 2020 and a later one Sept. 2021-Jan 2022 or even later (May 2022-Aug 2022). 3-4 Link encryptors would be needed.

Interfaces between layers:

- Preferable 004 (because of QoS and expected latencies) 014 if 004 is not implemented.

Impact				
Target sector planned impact: - Secure and privacy in e- health.	 Achieved KPI demonstrations: KPI 30: Latency in serving a request. KPI 18: Encrypted data throughput. 			
 Secure access to medical data by researchers. 	- KPI 56: Scalability of the solution.			
Companies attracted through use case:	All the KPIs designed for this UC have been fully achieved.			
 Telefónica de España HM Hospitals (a network of 17 hospitals, the second largest private group in Spain) 				
	Time of demonstration			
Deployment:				
 Initial development and adaptation of the Madrid Network: 14 months. The deployment is based on IPSec suite, which requires: 				
•	· · · · · · · · · · · · · · · · · · ·			
 Note that this deployment assumes that all the SDN stack of the Madrid Quantum Network is fully deployed and operative. 				
- The QKD secure transfer proposed on this UC will protect a set of sensitive medical data.				
Time of demonstration:				
 The first version of the e-Health UC based on the IPSec suite was developed on 04/2021. However, several improvements have been made since them. 				
- This demonstrator is being run on the Madrid Network since its first development and it is run periodically to measure the network performance, daily or weekly.				
 This demonstrator can be executed on any set of links of the network with QKD systems available. 				

Results

Lessons learned:

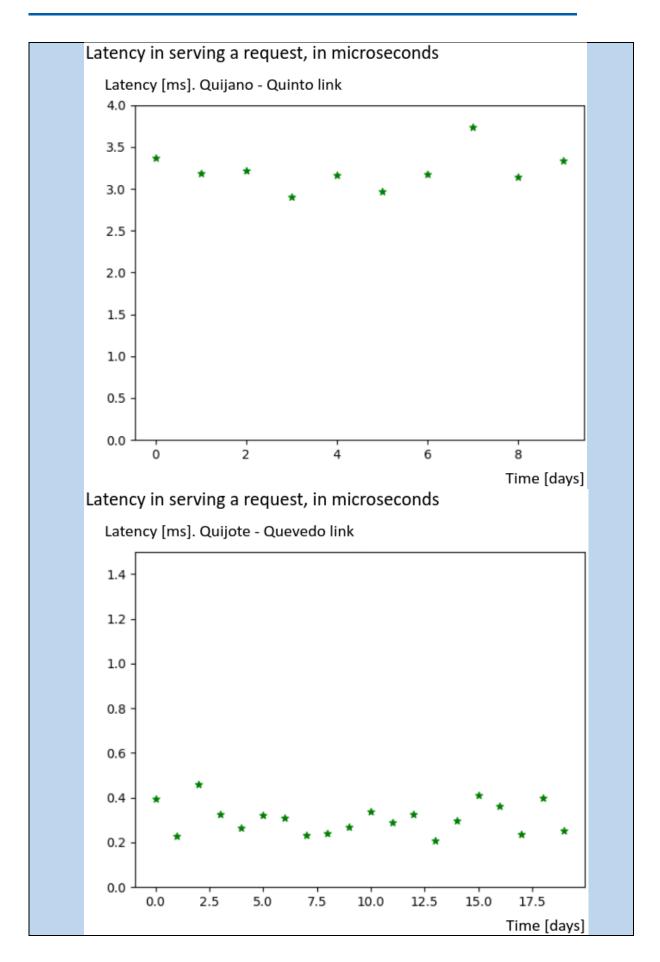
- QKD services can be used to provide quantum-safe communications for e-Health services.
- Using a general-purpose technology, such as the IPSec suite, enables tunnelling techniques that transparently transport any type of IP communication based on QKD ITS security.
- Using a software-defined technology, as this specific IPSec suite, enables a seamless integration with the software-defined QKD nodes of the Madrid network.
- As the IPSec suite is a software program, it needs enough computational power to perform the encryption of the communications relayed.

Changes necessary to already deployed infrastructure:

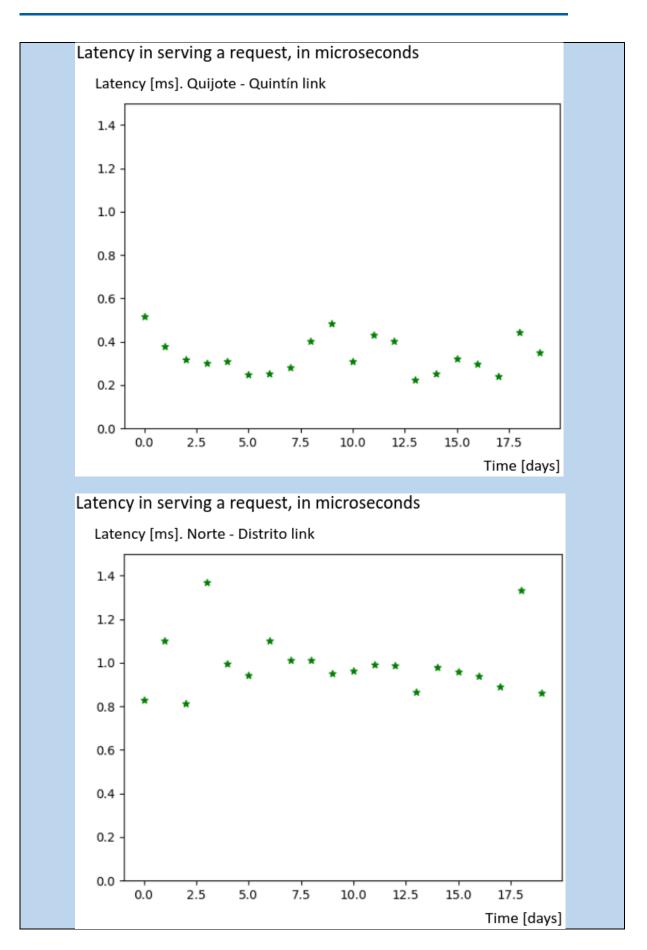
- The current version of the e-Health services use case runs on top of the Madrid's SDN stack, which delivers QKD services using the ETSI ISG QKD 004 standard access point.
- Additional computation power was needed in some IT systems deployed.

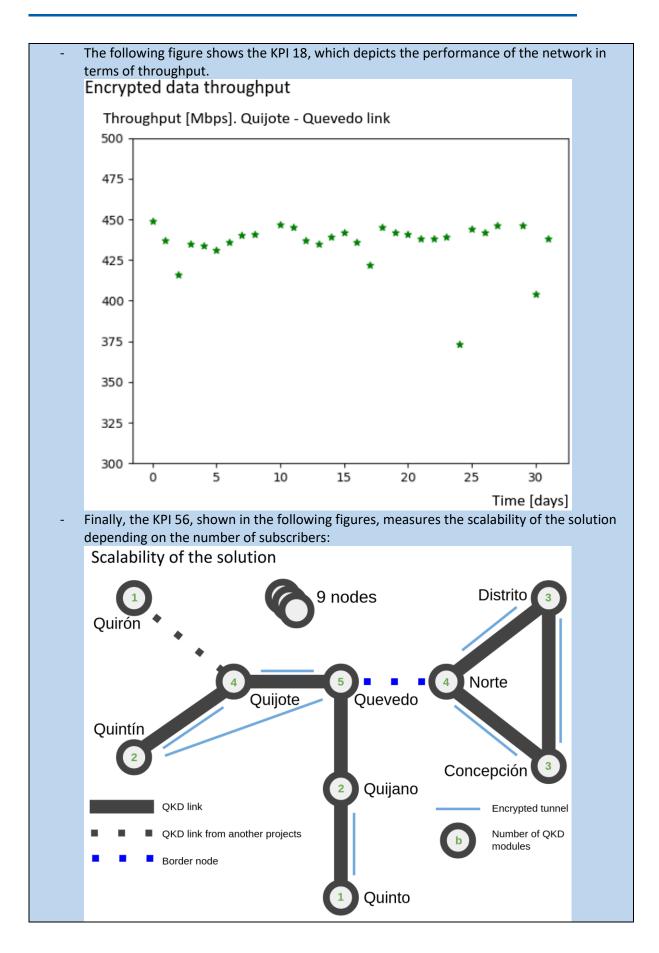
Target sector demonstrated impact:

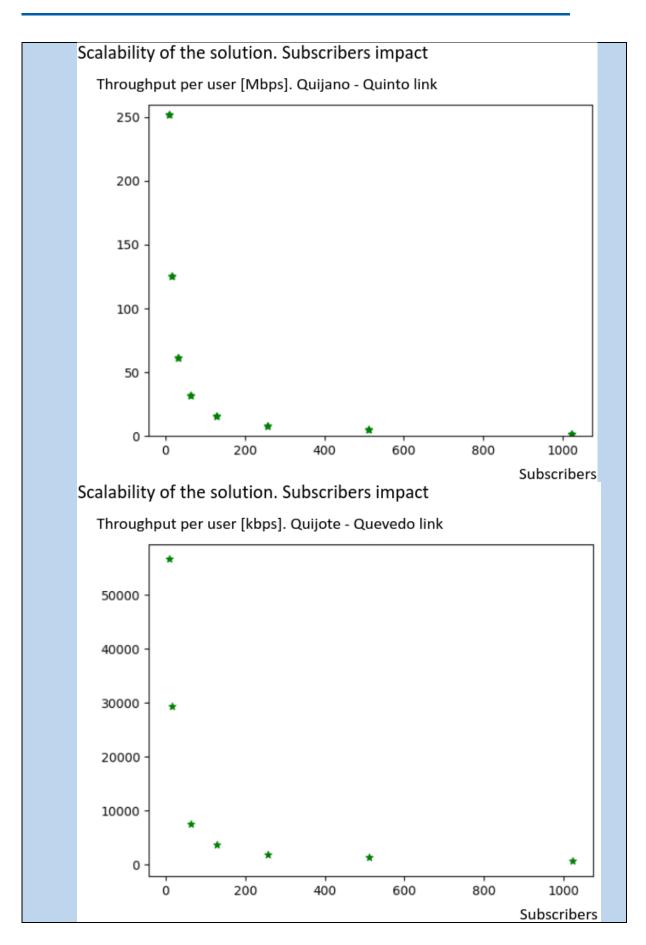
- Securing of health institutions' transmissions.

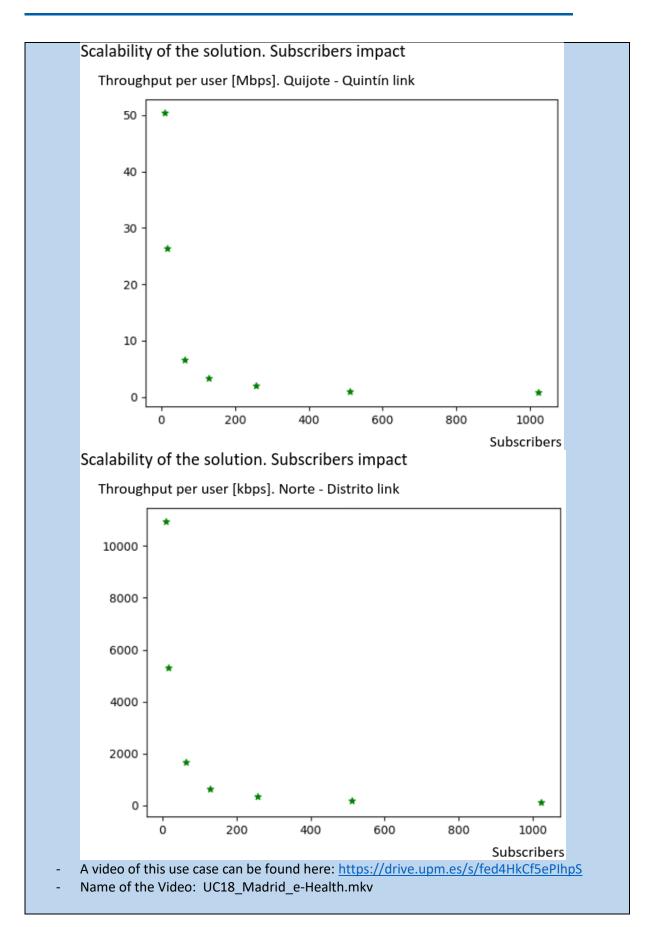

Estimated cost of implementation:

- QKD system: 150k€ (2 DVs modules)
- Personnel for installation and maintenance: 20k€
- Other equipment used: 10k€
- Desired airport cost for all of this: 10k€
- Software Development: Using as base the Madrid SDN Stack infrastructure, the implementation of the IPsec infrastructure requires 1PM during 14 months approximately.
 = 70K€
- Total cost: 260k€ UC working on one link.


Further comments:


- The following figures show the performance of the solution in terms of latency for serving a request, which is the KPI 30. This use case can be tested on any available link on the network, nevertheless, the Quijano-Quinto link is the unique one that operates over the simulated 5G infrastructure.





3.9 Use Case 19

ID: 19 Building a European quantum intenet				
Target sector: Research & Education	Prague 2019 Brno 2020			
Country: AT Main site: IQOQI Vienna	SAS 2019			
Description from Proposal:	Bratislava — 2021			
With use case #19 we intend to conr				
capital cities in the European Union over	er a			
quantum link, thus enabling the product	ion			
of a shared secret random key. The ci	VOCS			
will be connected via classical telecommu	uni-			
cation fibers with a wavelength of 1550	Liubliana			
This trusted-node free QKD system will	al-			
low 24/7 key generation.				
Partner	Role/Function			
OEAW	QKD System provider			
Slovak Academy of Sciences	Partner in Bratislava			
Türk Telekom International AT AG	Glass Fiber Provider			
Target costor planned impacts Dlang	Impact ed KPI demonstrations:			
Target sector planned impact:PlannConnecting academic institu	Entanglement based 24/7 operation of QKD-secured			
tions between Vienna and Brati-	long-distance links over several months without read-			
slava with a reliable QKD system	justing the setup			
(Austrian and Slovak Academia	 Developing a publicly accessible online-dashboard with 			
of Sciences). St. Pölten was cho-	real-time data updates and key generation			
sen because of its vicinity to -	- Optimized dispersion compensation			
Germany for future collabora-	- Low bandwidth polarization compensation			
tions.				
	Implementation			
Work plan/TODO list:				
15. Generating a secure key with the use of SNSPDs				
16. Optimize key rate by dispersion compensation				
17. Implementing automated and efficient real-time data analysis				
18. Evaluate findings				
19. Implement encryptor and interfaces to the network and the partner from academia				

	Block diagram			
	Alice Source Bob			
125km Vienna				
	St. Pölten 103km Bratislava			
	775 nm Signal/Pump Caser Path Dichroic Mirror Polarizing Beamsplitter			
	Half-Wave Mirror Mirror Crystal Coupling			
	Telecom 50.50 Beamsplitter Construction 4-Channel SNSPD			
	Site access			
- St. Pölten:	Unrestricted Restricted			
	how: restricted to trained persons only			
- Vienna:	Unrestricted Restricted how: restricted to trained persons only			
- Bratislava:	Unrestricted Restricted			
	how: restricted to trained persons only			
	······································			
Restricted access ex	amples: with passport; with short training; with trained person; restricted to			
trained persons only				
	Available power			
	y is available for telecom and quantum devices?			
- St. Pölten:	AC 230 🖾 DC 48 🗆			
- Vienna:	$\begin{array}{c c} AC 230 \boxtimes & DC 48 \square \\ AC 230 \boxtimes & DC 48 \square \\ \end{array}$			
- Bratislava:	AC 230 🛛 DC 48 🗆 Internet connection			
- St. Pölten:	Yes 🛛 No 🗆			
- Vienna:	Yes \boxtimes No \square			
- Bratislava:	Yes \boxtimes No \square			
	Existing equipment			
What else is available and can be used?				
St. Pölten				
- Data warehouse room with 230V and AC				
- Glass fiber to connect the Receiver-module				
	- Receiver-module			
- Superconducting nanowire (four channel) detector Vienna				
- Fully operational laboratory				
- EPR Source				
- Optical spare parts				
Bratislava				
- Glass fiber to connect the Receiver-module				
- Receiver-mo				
- Supercondu	cting nanowire detector			

Encryptors		
Manufacturers and Devices		
- IQOQI-made algorithms		
QKD Systems		
Manufacturers and Devices		
- Single Quantum		
o SNSPD		
- Toptica Photonics		
• High-power Laser		
PPLN based Telecommunication-band source		
Link details		
Please fill out the following list for each link (physical connection between two nodes):		
St. Pölten – Vienna		
- Number of parallel fibers: 2		
- Optical fiber details: length of fiber, attenuations in dB, type of fiber, quality of connec-		
tion (heavily spliced, old, direct connection) constraints/add-ons (e.g. filters or disper-		
sion compensation)		
o Length: 123 660 m		
 0,23 dB/km o measured attenuation for fiber 1: 25,73 dB 		
• measured attenuation for fiber 2: 26,03 dB		
• Type of fiber: Dark Fiber		
o Constraints: None		
o Add-ons: Dispersion compensation		
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber		
Channel) and occupied wavelengths		
 For classical communication LTE will be used 		
• For QKD Channel occupied wavelengths are ITU Ch 28 (1554.94 nm) & Ch 40		
(1545.32 nm)		
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch		
power of telecom channel needed		
• Dark Fiber		
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)		
• None		
Vienna - Bratislava		
- Number of parallel fibers: 2		
- Optical fiber details: length of fiber, attenuations in dB, type of fiber, quality of connec-		
tion (spliced, old, direct connection) constraints/add-ons (e.g. filters or dispersion com-		
pensation)		
o Length: 100 880 m		
o 0,23 dB/km		
o measured attenuation for fiber 1: 22,07 dB		
o measured attenuation for fiber 2: 22,43 dB		
 Type of fiber: Dark Fiber Constraints: None 		
o Constraints: None		

• Add-ons: Dispersion compensation

Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths • For classical communication LTE will be used • For QKD Channel occupied wavelengths are ITU Ch 28 (1554.94 nm) & Ch 40 (1545.32 nm) Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed ○ Dark Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range) Restricted to 1550.12 to 1552.12 nm in one channel and 1548.12 to 1550.12 nm due to dispersion compensation module **Planned deployments** St. Pölten - Vienna, 3243 Phyrra (AUT), Sebastian Neumann, Lukas Achatz, February 2020 - March 2020 Vienna - Bratislava, 851 01 Bratislava (SVK), Sebastian Neumann, Lukas Achatz, February 2020 – March 2020 Interfaces between layers: Employing IQOQI-written software between all layers Implementing communication APIs between IQOQI-written and external software **Results Lessons learned:** Automatized polarization compensation is substantially slowed down by high loss and therefore low detection rates due to the long integration times necessary for determining the actual quality of entanglement PMD in the fibers is not a problem for 100 GHz broad channels around 1550 nm Classical internet connections less stable than our quantum ones, especially if one has to rely on the mobile network More information can be inquired from our open-access publication: https://arxiv.org/abs/2203.12417 Changes necessary to already deployed infrastructure: All overland fiber stretches had to be spliced together rather than passing optical amplifiers in every (classical) repeater station Air-condition in receiver stations had to be enhanced in order to compensate for excess heat from helium compressor **KPI demo report:** Establishment of 24/7 quantum connections over altogether several weeks, longest uninterrupted time: 8 days Optimized dispersion compensation has been achieved, temporal detection precision limited by electronics only Polarization compensation successful, with 75% duty cycle **Target sector demonstrated impact:** Connected academic institutions between Vienna and Bratislava with a reliable QKD system (Austrian and Slovak Academia of Sciences) Scientific publications submitted to high-impact journals **Estimated cost of implementation:** Cost of QKD system: 7.000,00€ Cost of the encryptor: 15.000,00€ Cost for other equipment: 120.000,00€

		Impact	
Target	sector planned impact:	Achieved KPI demonstrations:	
Target	Connecting members of the	Achieved Kri demonstrations.	
-	European Union by imple-	- Establishment of 24/7 quantum connections	
	menting a trusted-node free	over altogether several weeks, longest uninter-	
	QKD System to allow secure	rupted time: 8 days	
	communication between re-	- QKD-secured and stable communication be-	
	search facilities has been	tween European research facilities successful	
	successful	- Optimized dispersion compensation has been	
	3000033101	achieved, temporal detection precision limited	
Compa	anies attracted through use	by electronics only	
case:		 Polarization compensation successful, with 75% 	
-	N.a. (Scientific research	duty cycle	
	demonstration)		
	,	ime of demonstration	
Denlo	yment:		
	-	.9, ready for experiments: July 2021	
Time	of demonstration:		
-		QKD-runs starting in September, 3 successful runs of 3	
	days, 8 days, 4 days		
		Results	
Lesson	s learned:	Results	
Lesson		pensation is substantially slowed down by high loss and	
	•	due to the long integration times necessary for determin-	
	ing the actual quality of entar		
_		-	
-	 PMD in the fibers is not a problem for 100 GHz broad channels around 1550 nm Classical internet connections less stable than our quantum ones, especially if one has 		
	to rely on the mobile network		
_	•	ired from our open-access publication:	
	https://arxiv.org/abs/2203.12		
Chang	es necessary to already deploy		
-		d to be spliced together rather than passing optical am-	
	plifiers in every (classical) rep		
-		ons had to be enhanced in order to compensate for excess	
	heat from helium compressor		
Target	sector demonstrated impact:		
-	-	ons between Vienna and Bratislava with a reliable QKD	
	system (Austrian and Slovak Academia of Sciences)		
-	- Scientific publications submitted to high-impact journals:		
	https://arxiv.org/ftp/arxiv/papers/2203/2203.12417.pdf		
	https://arxiv.org/pdf/2107.07756v2.pdf		
	https://journals.aps.org/pra/pdf/10.1103/PhysRevA.104.022406 https://iopscience.iop.org/article/10.1088/2058-9565/abe5ee		
Ectimo	https://iopscience.iop.org/article/ ited cost of implementation:	10.1066/2036-9303/a00300	
LSUIIIa	-		
_	 Cost of QKD system: 7.000,00€ Cost of the encryptor: 15.000,00€ 		
-	- Cost for other equipment: 120.000,00€		
Furthe	r comments:		
. artic	n.a.		

KPI Groups (Unique and Sorted)	KPI name	
Rates	Key creation rates	1.4 Hz
	Key consumption rates	n.a.
	Key transmission rate	1.0 Hz
	QBER / excess noise	7.0%
Throughput	Data Transactions	n.a.
	Data Throughput	10 Mbit on average for g(2)-corre- lation
Latency	Quantum network latency	Not measured (research project)
	classical network latency	Not measured (research project)
Compatibility with existing Infrastructure Modularity		Research project → most of equip- ment built by hand on optical ta- bles, repeated alignment required Receiver: can be operated in stand- ard 19-inch-rack + helium compres- sor & hoses Source: optical table, consists of readily bought laser and dispersion compensation, entanglement crea- tion stag self-built
	Equipment Size	Both receiver stations: 19-inch-rack of 160cm height + helium compres- sor (50x44x43cm HxDxW) and he- lium hoses Sender station: Optical table incl. source, laser, isolator stage, disper- sion compensation + laminar air- flow: 200x100x150cm HxDxW
	Deployment (Size & Automation)	Once started, ran for up to 8 days
	Scalability	n.a.
Security & certifica- tion	Security & certification	n.a. (research, quantum optics layer)
Resistance to Failure & Link stability	Resistance to Failure	Main problem: overhead; quantum optical equipment (laser, source, detectors) ran stable with no re- ported failure
	Link stability	8 days max., main problem: stabil- ity of internet connection
Use Case or Testbed specific features	Use Case or Testbed specific features	Connection of research facilities Vienna-Bratislava

Non-technical KPIs	number	Examples (references, links)
Number of publica- tions	4	https://arxiv.org/ftp/arxiv/papers/2203/2203.12417.pdf https://arxiv.org/pdf/2107.07756v2.pdf https://jour- nals.aps.org/pra/pdf/10.1103/PhysRevA.104.022406 https://iopscience.iop.org/article/10.1088/2058- 9565/abe5ee
Number of public re- lation communica- tions	3	Via social media. For final (summarizing) publication, press statements and interviews in newspapers are planned, needs to be published first
Number of videos or newsletters	0	
Number of web site visits and visit dura- tion		www.quapital.eu

3.10 Use Case 20

<i>ID:</i> 20					
Building a European quantum inte	ernet				
		Prague 2019			
Target sector: Research & EducationCountry: ATMain site: IQOQI Vienna		Brno 2020			
Description from Proposal:	enna	Bratislava - 2019			
With use case #20 we intend to	implo	Munich 10001 2021			
ment a QKD network between me	-	Vienna			
of the European Union. The network					
be implemented between Vienn		BME			
Prague (CZ), Bratislava (SK), Bu		(Graz VOGS)			
(HU) and potentially Zagreb (C	-	No. And States			
Ljubljana (SI). With this, the res	-	Liubliana			
governments will be able to comm		Zagreb			
in full secrecy without having to tru					
parties.					
Partner		Role/Function			
OEAW		QKD System provider			
Slovak Academy of Sciences		Partner in Bratislava			
Ruder Boskovic Institute		Partner in Zagreb			
Department of Telecommunication	on	Partner in Budapest			
and Media Informatics					
Cesnet		Technical support			
Türk Telekom International AT A	G	Glass Fiber Provider			
		Impact			
S 1 1		PI demonstrations:			
Connecting members of the		tanglement based 24/7 operation of QKD-secured			
European Union by imple-	long-distance links over several months without readjust-				
menting a trusted-node free	ing the setup				
QKD System to allow secure	- Low bandwidth polarization compensation				
inter-government communica-	- QKD-secured and stable communication between Euro-				
tion.	pean embassies and governments				
Implementation					
Work plan/TODO list:					
 20. Generating a secure key with the use of SNSPDs 21. Optimize key rate by dispersion compensation 					
	22. Implementing automated and efficient real-time data analysis				
22. Implementing automated and efficient real-time data analysis					

- 23. Evaluate findings
- 24. Write Report

		Block diagram				
Government 1			1 [Government 2		
SNSPD Bob-Module 1 with dispersion compensation	Glasfiber	EPR Source	Glasfiber	Bob-Module 2 with dispersion compensation		
Time-tagging		Synchronized time-taggers				
module				Time-tagging module		
		Data analysis software				
		Site access				
- St. Pölten: U	nrestricted	\square Restricted \boxtimes				
		o trained persons only				
	nrestricted					
		o trained persons only				
	Inrestricted	· · · · · · · · · · · · · · · · · · ·				
If restricted how: r	estricted to	o trained persons only				
Restricted access examples	: with nas	sport: with short training	· with tra	ined nerson: restricted to		
trained persons only	. with pas	sport, with short training	,			
		Available power				
What power delivery is ava	ilable for t	· · ·	vices?			
	AC 230 🖂	DC 48 🗆				
- Vienna: A	AC 230 🖂	DC 48 🗆				
- Bratislava: A	AC 230 🛛	DC 48 🗌				
		Internet connection				
- St. Pölten:	Yes 🖂 🛛 I	No 🗆				
- Vienna:	Yes 🛛 🛛 I	No 🗆				
- Bratislava:	Yes 🖂 🛛	No 🗆				
		Existing equipment				
What else is available and o	can be use	d?				
St. Pölten						
- Glass fiber to connect the Receiver-module						
- Receiver-module						
- Superconducting nanowire detector Vienna						
- Fully operational laboratory						
- EPR Source						
- Optical spare parts						
Bratislava						
- Glass fiber to connect the Receiver-module						
- Receiver-module						
- Superconducting nanowire detector						
Encryptors						
Manufacturers and Device						
 IQOQI-mac 	de algorith	ms				

QKD Systems

Manufacturers and Devices

- Single Quantum
 - SNSPD
 - **Toptica Photonics**
 - High-power Laser
 - o PPLN based Telecommunication-band source

Link details

Please fill out the following list for each link (physical connection between two nodes):

St. Pölten – Vienna

- Number of parallel fibers: 2
- Optical fiber details: length of fiber, attenuations in dB, type of fiber, quality of connection (heavily spliced, old, direct connection) constraints/add-ons (e.g. filters or dispersion compensation)
 - o Length: **123 660 m**
 - o 0,23 dB/km
 - o measured attenuation for fiber 1: 25,73 dB
 - o measured attenuation for fiber 2: 26,03 dB
 - Type of fiber: Dark Fiber
 - o Constraints: None
 - Add-ons: Dispersion compensation
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
 - o For classical communication LTE will be used
 - For QKD Channel occupied wavelengths are ITU Ch 28 (1554.94 nm) & Ch 40 (1545.32 nm)
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
 - o Dark Fiber
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)
 None

Vienna - Bratislava

- Number of parallel fibers: 2
- Optical fiber details: length of fiber, attenuations in dB, type of fiber, quality of connection (heavily spliced, old, direct connection) constraints/add-ons (e.g. filters or dispersion compensation)
 - o Length: 100 880 m
 - o 0,23 dB/km
 - o measured attenuation for fiber 1: 22,07 dB
 - o measured attenuation for fiber 2: 22,43 dB
 - o Type of fiber: Dark Fiber
 - o Constraints: None
 - Add-ons: Dispersion compensation
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
 - For classical communication LTE will be used

	 For QKD Channel occupied wavelengths are ITU Ch 28 (1554.94 nm) & Ch 40
	(1545.32 nm)
-	Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch
	power of telecom channel needed
	o Dark
-	Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)
	o None
-	
	Planned deployments
-	Vienna - Bratislava, 851 01 Bratislava (SVK), Sebastian Neumann, Lukas Achatz, February
	2020 – March 2020
Interfa	aces between layers:
-	Employing IQOQI-written software between all layers
-	Implementing communication APIs between IQOQI-written and external software
	Results
Lessor	ns learned:
-	Automatized polarization compensation is substantially slowed down by high loss and
	therefore low detection rates due to the long integration times necessary for determining
	the actual quality of entanglement
-	PMD in the fibers is not a problem for 100 GHz broad channels around 1550 nm
-	Classical internet connections less stable than our quantum ones, especially if one has to
	rely on the mobile network
-	More information can be inquired from our open-access publication:
	https://arxiv.org/abs/2203.12417
Chang	es necessary to already deployed infrastructure:
-	All overland fiber stretches had to be spliced together rather than passing optical amplifi-
	ers in every (classical) repeater station
-	Air-condition in receiver stations had to be enhanced in order to compensate for excess
	heat from helium compressor
KPI de	emo report:
-	Entanglement based 24/7 operation of QKD-secured long-distance links over several
	weeks (instead months) without readjusting the setup
-	Low bandwidth polarization compensation successful, 75% duty cycle
Target	t sector demonstrated impact:
-	Connecting members of the European Union by implementing a trusted-node free QKD
	System to allow secure communication (between research facilities) has been successful
Estima	ated cost of implementation:
-	Cost of QKD system: 7.000,00€
-	Cost of the encryptor: 15.000,00€
	Cast for other aquipment: 120,000,006

- Cost for other equipment: 120.000,00€

	Impact			
Target sector planned impact:	Achieved KPI demonstrations:			
- Connecting members of the	Achieved Kritdemonstrations.			
European Union by imple-	- Entanglement based 24/7 operation of QKD-se-			
menting a trusted-node free	cured long-distance links over several weeks (in-			
QKD System to allow secure	.			
	stead months) without readjusting the setup			
communication (between re-	- Low bandwidth polarization compensation suc-			
search facilities) has been	cessful, 75% duty cycle			
successful				
Companies attracted through use				
case:				
- N.a. (Scientific research				
demonstration)				
	Time of demonstration			
Deployment:				
 Start of deployment: June 201 	9, ready for experiments: July 2021			
Time of demonstration:				
- July 2021 – December 2021, C	KD-runs starting in September, 3 successful runs of 3 days, 8			
days, 4 days				
	Results			
Lessons learned:				
 Automatized polarization com 	pensation is substantially slowed down by high loss and			
therefore low detection rates	due to the long integration times necessary for determining			
the actual quality of entanglement				
rely on the mobile network	less stable than our quantum ones, especially if one has to			
	ired from our open-access publication:			
https://arxiv.org/abs/2203.12				
Changes necessary to already deploye				
	d to be spliced together rather than passing optical amplifi-			
	ers in every (classical) repeater station			
- Air-condition in receiver stations had to be enhanced in order to compensate for excess				
heat from helium compressor				
Target sector demonstrated impact:				
- Connecting members of the European Union by implementing a trusted-node free QKD				
System to allow secure communication (between research facilities) has been successful				
- Scientific publications submitted to high-impact journals:				
https://arxiv.org/ftp/arxiv/papers/2203/2203.12417.pdf https://arxiv.org/pdf/2107.07756v2.pdf				
	https://arxiv.org/pdf/2107.07/56v2.pdf https://journals.aps.org/pra/pdf/10.1103/PhysRevA.104.022406			
https://journais.aps.org/article/10.1088/2058-9565/abe5ee				
Estimated cost of implementations				
Estimated cost of implementation:				
- Cost of QKD system: 7.000,00€				
- Cost of the encryptor: 15.000,004	 Cost for other equipment: 120.000,00€ 			
- Cost for other equipment: 120				

KPI Groups (Unique and Sorted)	KPI name	
Rates	Key creation rates	1.4 Hz
	Key consumption rates	n.a.
	Key transmission rate	1.0 Hz
	QBER / excess noise	7.0%
Throughput	Data Transactions	n.a.
	Data Throughput	10 Mbit on average for g(2)-correlation
Latency	Quantum network latency	Not measured (research project)
	classical network latency	Not measured (research project)
Compatibility with existing Infrastructure	Modularity	Research project → most of equipment built by hand on optical tables, re- peated alignment required Receiver: can be operated in standard 19-inch-rack + helium compressor & hoses Source: optical table, consists of read- ily bought laser and dispersion com- pensation, entanglement creation stag self-built
	Equipment Size	Both receiver stations: 19-inch-rack of 160cm height + helium compressor (50x44x43cm HxDxW) and helium hoses Sender station: Optical table incl. source, laser, isolator stage, dispersion compensation + laminar airflow: 200x100x150cm HxDxW
	Deployment (Size & Automation)	Once started, ran for up to 8 days
	Scalability	n.a.
Security & certifica- tion	Security & certification	n.a. (research, quantum optics layer)
Resistance to Failure & Link stability	Resistance to Failure	Main problem: overhead; quantum op- tical equipment (laser, source, detec- tors) ran stable with no reported failure
	Link stability	8 days max., main problem: stability of internet connection
Use Case or Testbed specific features	Use Case or Testbed specific features	Connection of European Union mem- bers Austria & Slovakia

Non technical KPIs	number	Examples (references, links)
Number of publica- tions	4	https://arxiv.org/ftp/arxiv/papers/2203/2203.12417.pdf https://arxiv.org/pdf/2107.07756v2.pdf https://jour- nals.aps.org/pra/pdf/10.1103/PhysRevA.104.022406 https://iopscience.iop.org/article/10.1088/2058-9565/abe5ee
Number of public re-		Via social media. For final (summarizing) publication, press
lation communica- tions	3	statements and interviews in newspapers are planned, needs to be published first
Number of videos or newsletters	0	
Number of web site		www.quapital.eu
visits and visit dura- tion		

3.11 Use Case 25

ID: 24			
Quantum Cryptography for B2	B and 5G net-	-	
works			
Target sector:Commercial and inf	rastructure		
Country: SP Main site: Madrid			
Description from Proposal:		Network	
As the network is evolving toward scalable architectures, it enables for	or a higher grar	Pog/Pogn/Initiato/Poport	
ularity when managing network se means that new technologies and s		Edit/Get_config	
seamlessly integrated in the netwo			
few days, while networks can be s	-		
management left for the end users		n (MPLS)	
demand. One of the most desired a			
capabilities is to have an enhanced	-		
ing the transport segment, tradition			
"black box" from the end user per will play an important role when s			
work, as traditional transport servi	U		
private networks-VPNs, label swit			
or tunnels) can additionally integra			
curing end-to-end communication	-		
services on top of the transport net	work, such as		
VPNs for business to business (B2			
ity from base stations to core or da	-		
ises (e.g. for 5G), to incorporate quantum comparison of the second seco		e-	
curity for end users communicatio Partner	115.	Role/Function	
idQ		QKD System provider	
TREL		QKD System provider	
TID		Testbed and SW provider	
UPM		SW provider	
RM		Testbed provider	
Other		QKD experimental System provider	
	lm	npact	
Target sector planned impact:		demonstrations:	
Secure and privacy in e-health			
Companies attracted through		ctions per unit time	
use case:		a throughput	
- Telefónica de España			
- BT			
- DT			
Implementation			
Work plan/TODO list:			
33. Define parameters for the test.			
34. Prepare QKD systems and	SW deployme	ent	

- 35. Schedule exact date for deployment with hardware and personnel
- 36. Perform deployment
- 37. Adjust deployment
- 38. Finalize deployment and retrieve devices
- 39. Evaluate findings
- 40. Write Report

Block diagram

Site access

Note: Nine possible places can be used for this test, six of them are in the RM network and they can be accessed with less restrictions and the other three are within the Telefonica production network, with much more restricted access. Ideally, all the sites (with a topology that imply seven links -three of them in a star with a central node and several hops in one of the branches(UPM-RMCIEMAT, RMCIEMAT-UAM, RMCIEMAT-CSIC, CSIC-IMDEANW, IMDEANW-URJC), three of them in a ring (Telefonica production network, ALMAGRO-NORTE, ALMAGRO-CONCEPCION, CONCEP-CION-NORTE) and another link connecting both (ring and star) could be used.

An initial early deployment (three months) is planned for the first demonstration, which is smaller but important since it will connect with 5G lab from Telefonica which is located at IMDEA Networks. This link is the most difficult in the Madrid network since it will be shared with several lambdas, does not have a backup line with similar capacity that would allow for a temporary rerouting of the classical traffic while work is done. It also has amplifiers that need to be by-passed. This line will be in trial mode till May 2020 and this will allow us to do many tests, so a first deployment is scheduled for Feb-Apr. 2020 using the CSIC-IMDEANW, IMDEANW-URJC links. A later test, including more nodes is scheduled for Dec. 2021-March 2022, mixing topologies and network providers.

The RM network and the Telefonica production have different access requirements:

- **RM Sites** Unrestricted □ Restricted ⊠ If restricted how: RM permission
- **Telefónica Production:** Unrestricted □ Restricted ⊠ If restricted how: restricted to trained persons only

Restricted access examples: with passport; with short training; with trained person; restricted to trained persons only

Available power				
What power de	livery is available for telecom and quantum devices?			
- Site1	AC 230 🗆 DC 48 🗆			
- Site2	AC 230 🗆 DC 48 🗆			
- Site3	AC 230 🗆 DC 48 🗆			
	Internet connection			
- Site1	Yes 🗌 No 🗌			
- Site2	Yes 🗌 No 🗌			
- Site3	Yes 🗆 No 🗆			
Existing equipment				
What else is available and can be used?				
Site1				

- Site2
-
Site3
Encryptors
Manufacturers and Devices
 2 first phase
 4 second phase
QKD Systems
Manufacturers and Devices
o 2 first phase
o 6 second phase
Link details
Please fill out the following list for each link (physical connection between two nodes): (all currently available links are listed, the detailed links/topologies are commented in the "Site Ac- cess" section)
Link1: UPM – RMCIEMAT
- Number of parallel fibers:2 (moderately shared, several lambdas, backup line)
- 24 Km, 6 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber
 Channel) and occupied wavelengths Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch
power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)
Link2: RMCIEMAT-UAM
- Number of parallel fibers:2 (moderately shared, several lambdas, backup line)
- 24 Km, 8 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber
Channel) and occupied wavelengths
 Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch
power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)
Link3: RMCIEMAT- RMCSIC - Number of parallel fibers:2 (non-shared)
- 6.5 Km, 3.5 dB losses, SMF
 Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber
Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch
power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)
Link4: RMCSIC-IMDEA NW (shared, several lambdas)
- Number of parallel fibers:2
- 33 Km, 10 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber
Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch
power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link5: IMDEANW- URJC

- Number of parallel fibers:2 (shared, several lambdas)
- 22.5 Km, 6 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link6: URJC-RMCIEMAT

- Number of parallel fibers:2 (shared, several lambdas)
- 40 Km, 12 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link7: ALMAGRO-NORTE

- Number of parallel fibers:2 (non-shared)
- 3.9 Km, 8.5 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

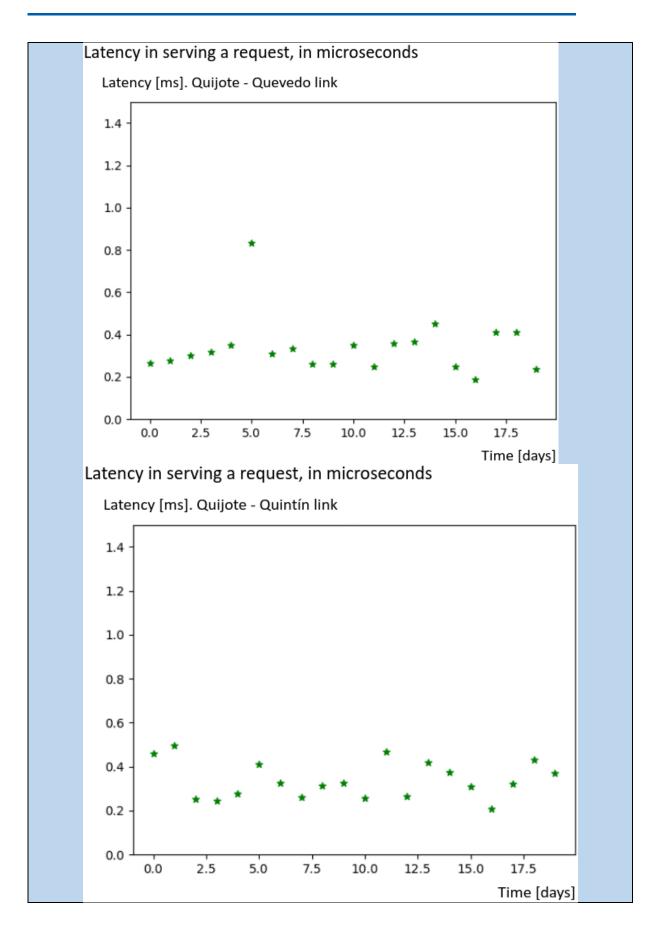
Link8: ALMAGRO-CONCEPCION

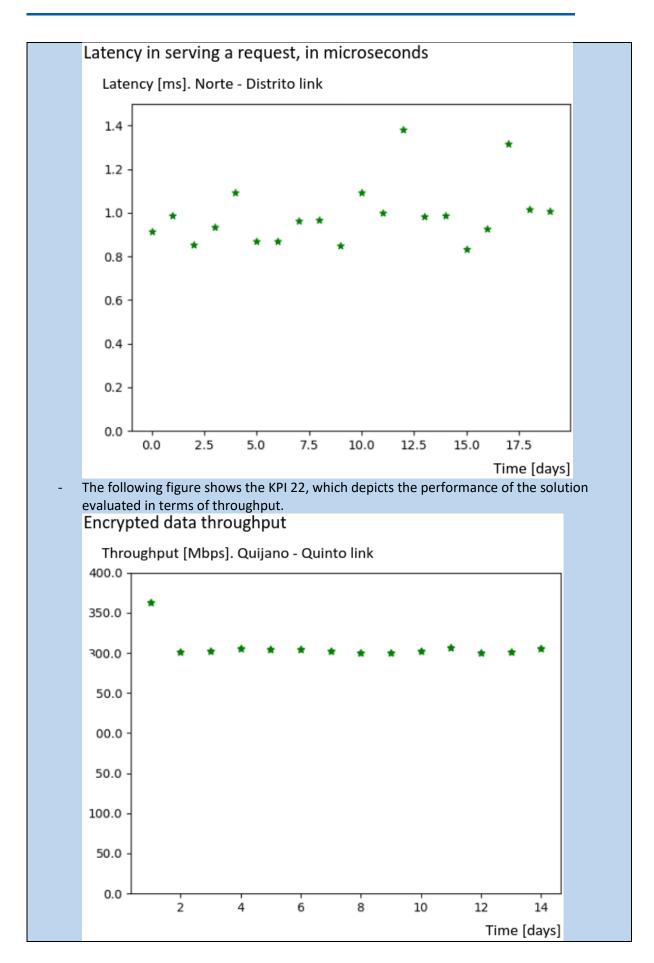
- Number of parallel fibers:2 (non-shared)
- 6.4 Km, 8 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link9: CONCEPCION- NORTE

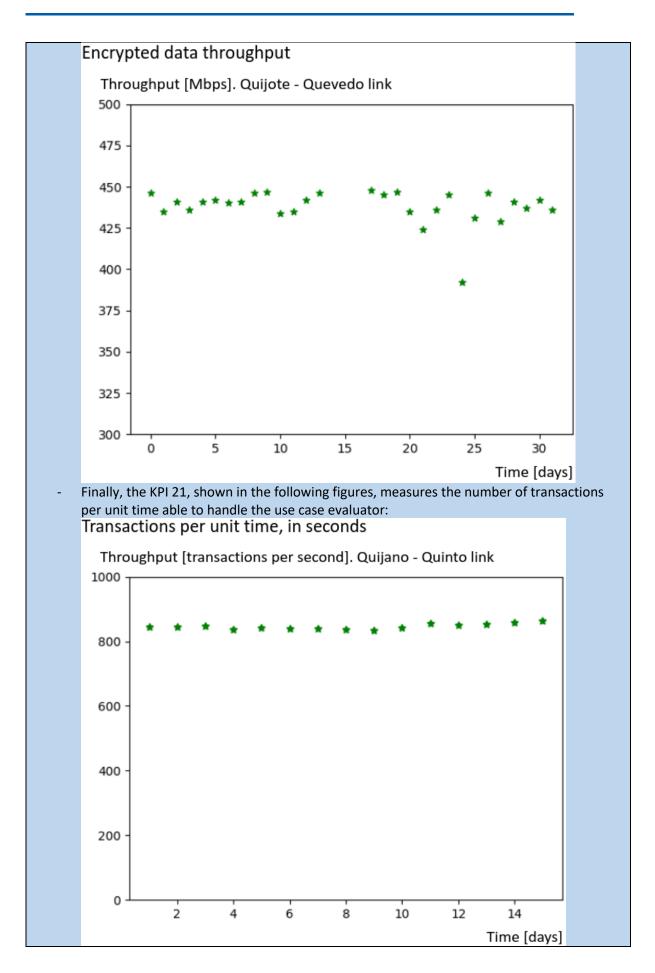
- Number of parallel fibers:2 (non-shared)
- 5 Km, 7 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range) Planned deployments
- First phase: 2 links. Feb 2020 April 2020
- Second phase: 6 links. Dec. 2021 March 2022

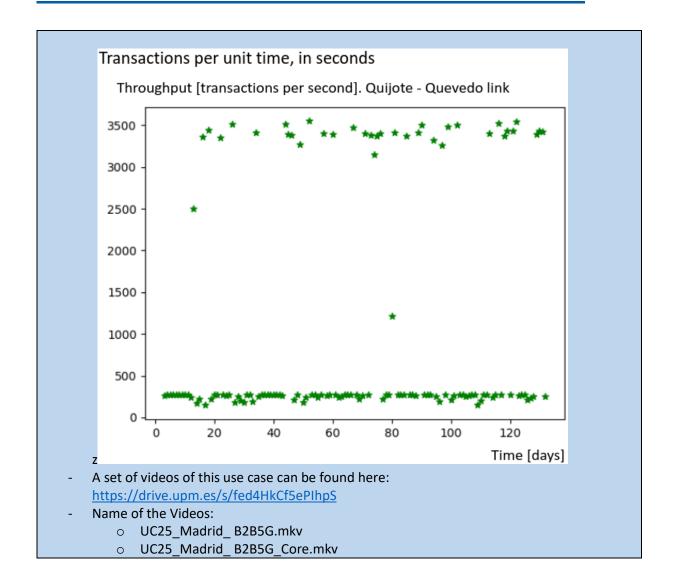
Interfaces between layers:


- Preferable 004 (because of QoS and expected latencies) 014 if 004 is not implemented.


		Impact			
Target sector p	annod impact:	Impact Achieved KPI demonstrations:			
- Comme	•				
	ucture features as in	- KPI 21: Transactions per unit time			
- mirasu 5G.	icture reatures as in	 KPI 22: Data throughput KPI 31: Connection latencies 			
	a stad thusush use	- KPI 31: Connection latencies			
-	acted through use	All the KDIs designed for this LIC have been fully achieved			
case:	an da Faraña	All the KPIs designed for this UC have been fully achieved.			
	ica de España				
- BT					
- DT		in a film and the time			
Developments		ime of demonstration			
Deployment:					
	•	tion of the Madrid Network: 14 months.			
•	•	ucture based on 5G requires:			
0	•	all and properly configure and launch the 5G network			
	simulator.				
	•	Sec suite, which requires:			
0	•	tunnel link between a pair of trusted nodes.			
		mes that all the SDN stack of the Madrid Quantum			
	k is fully deployed and o	•			
		rform this use case arrived in Madrid a few months ago, so			
		plement them a few weeks ago.			
) secure transfer propos	sed on this UC will protect a set of sensitive corporative			
data.					
Time of demonstration:					
		32B over 5G UC based on the IPSec suite was developed on			
04/2021. However, several improvements have been made since them.					
- This demonstrator is running on the Madrid Network since its first development and it					
runs periodically, daily or weekly, to measure the network performance.					
- This demonstrator can be executed on any set of links of the network with QKD systems					
available.					
		Results			
Lessons learne					
 QKD se 	vices can be used to de	liver quantum-safe communications to B2B and 5G			
service					
- Using a general-purpose technology, such as the IPSec suite, enables tunnelling techniques					
that transparently transport any type of IP communication based on QKD ITS security.					
- Using a software-defined technology, as this specific IPSec suite, enables a seamless					
integration with the software-defined QKD nodes of the Madrid network.					
- As the IPSec suite is a software program, it needs of enough computational power to					
perform the encryption of the communications relayed.					
Changes necessary to already deployed infrastructure:					
- The current version of the B2B and 5G services use case runs on top of the Madrid's SDN					
stack, which delivers QKD services using the ETSI ISG QKD 004 standard access point.					
 The 5G network was simulated using Free5GC. 					
- Additio	nal computation power	was needed in some IT systems deployed.			
Target sector d	emonstrated impact:				
- Securin	g of B2B communication	ns through 5G			
	of implementation:				
Estimated cost	or implementation				

Personnel for installation and maintenance: 20k€ Other equipment used: 10k€ Desired airport cost for all of this: 10k€ Software Development: Using as base the Madrid SDN Stack infrastructure, the implementation of the IPSec infrastructure requires 1PM during 14 months approximately. = 70K€ The 5G simulation = 0K€ Total cost: 260k€ UC working on one link. **Further comments:** The following figure shows the performance of the solution in terms of latency for serving a request, which is the KPI 31. Note that the Quijano-Quinto link operates over the simulated 5G infrastructure. Latency in serving a request, in microseconds Latency [ms]. Quijano - Quinto link 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2 4 6 8 10 12 14 16 Time [days]





3.12 Use Case 26

ID: 25				
Self-healed network manageme	ent			
Sen neuroa network manageme				
Target sector:Commercial and inf	rastructure			
Country: SP Main site: Madrid	rustructure			
· · · · · · · · · · · · · · · · · · ·				
Description from Proposal:	a flow his and	Cloud/NFV RESTful/SSH	Network	
As the network is evolving toward		Management	Orchestration	
scalable architectures, it enables for ularity when managing network set		RESTful/SSH	RESTful/SSH	
means that new technologies and s				
seamlessly integrated in the netwo		Cloud & Infrast. SDN / NMS	Cloud & Infrast.	
few days, while networks can be s		Platforms System	OpenFlow Platforms NETCONF RESTful/SSH	
management left for the end users		RESITUI/SSH		
demand. One of the most desired a				
capabilities is to have an enhanced		LAYER		
ing the transport segment, tradition	-			
"black box" from the end user per	-			
will play an important role when s	• •			
work, as traditional transport servi	-			
private networks-VPNs, label swit	ched paths-LS			
or tunnels) can additionally integra	ate QKD for se			
curing end-to-end communication	s. This will al-			
low services on top of the transport				
as VPNs for business to business (
tivity from base stations to core or				
premises (e.g. for 5G), to incorpor				
safe security for end users commu	nications.			
Partner		Role/Functio		
idQ		QKD System prov		
TREL		QKD System prov		
TID		Testbed and SW p		
UPM		SW provider		
RM		Testbed provider		
Other		QKD experimental System provider		
Impact				
Target sector planned impact:	Planned KPI	ionstrations:		
Secure and privacy in e-health	- Later	s for control commands		
Companies attracted through	ent time of SW images.			
use case:	- Integ	on capability with 5G		
- Telefónica de España				
- BT				
- DT				
Implementation				
Work plan/TODO list:				
41. Define parameters for the test.				
42. Prepare QKD systems and SW deployment				
43. Schedule exact date for deployment with hardware and personnel				
45. Schedule exact date for d	epioyment wit	nuware and personner		

44. Perform deployment				
45. Adjust deployment				
46. Finalize deployment and retrieve devices				
47. Evaluate findings				
48. Write Report				
Block diagram				
Site access				
Note: Nine possible places can be used for this test, six of them are in the RM network and they				
can be accessed with less restrictions and the other three are within the Telefonica production network, with much more restricted access. Ideally, all the sites (with a topology that imply seven links -three of them in a star with a central node and several hops in one of the branches (UPM- RMCIEMAT, RMCIEMAT-UAM, RMCIEMAT-CSIC, CSIC-IMDEANW, IMDEANW-URJC), three of them in a ring (Telefonica production network, ALMAGRO-NORTE, ALMAGRO-CONCEPCION, CONCEP- CION-NORTE) and another link connecting both (ring and star) could be used.				
A relatively late deployment is planned (four months, Sept-Dic. 2021) for the demonstration and both network topologies (ring or star) can be used. The RM network and the Telefonica production have different access requirements:				
 - RM Sites Unrestricted □ Restricted ⊠ If restricted how: RM permission - Telefónica Production: Unrestricted □ Restricted ⊠ If restricted how: restricted to trained persons only 				
Restricted access examples: with passport; with short training; with trained person; restricted to				
trained persons only				
Available power				
What power delivery is available for telecom and quantum devices?				
- Site1 AC 230 🗆 DC 48 🗆				
- Site2 AC 230 🗆 DC 48 🗆				
- Site3 AC 230 🗆 DC 48 🗆				
Internet connection				
- Site1 Yes 🗌 No 🗌				
- Site2 Yes 🗌 No 🗌				
- Site3 Yes 🗆 No 🗆				
Existing equipment				
What else is available and can be used?				
Site1				
-				
Site2				
- Site3				
-				
Encryptors				
Manufacturers and Devices				
 Encryptors would be welcome, but not strictly necessary since the required en- 				
cryption can be done in SW.				

	QKD Systems
Manu	facturers and Devices
	o 6 links
	Link details
	e fill out the following list for each link (physical connection between two nodes):
-	rrently available links are listed, the detailed links/topologies are commented in the "Site Ac-
cess"	section)
LINK1:	UPM – RMCIEMAT
-	Number of parallel fibers:2 (moderately shared, several lambdas, backup line) 24 Km, 6 dB losses, SMF
-	Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber
-	Channel) and occupied wavelengths
_	Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch
	power of telecom channel needed
_	Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)
Link2:	RMCIEMAT-UAM
-	Number of parallel fibers:2 (moderately shared, several lambdas, backup line)
-	24 Km, 8 dB losses, SMF
-	Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber
	Channel) and occupied wavelengths
-	Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch
	power of telecom channel needed
-	Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)
Link3:	RMCIEMAT- RMCSIC
-	Number of parallel fibers:2 (non-shared)
-	6.5 Km, 3.5 dB losses, SMF
-	Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber
	Channel) and occupied wavelengths
-	Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch
	power of telecom channel needed
- 1 ink/1	Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range) RMCSIC-IMDEA NW (shared, several lambdas)
LINK4:	Number of parallel fibers:2
_	33 Km, 10 dB losses, SMF
_	Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber
	Channel) and occupied wavelengths
_	Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch
	power of telecom channel needed
-	Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)
Link5:	IMDEANW- URJC
-	Number of parallel fibers:2 (shared, several lambdas)
-	22.5 Km, 6 dB losses, SMF
-	Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber
	Channel) and occupied wavelengths
-	Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch
	power of telecom channel needed
-	Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link6: URJC-RMCIEMAT

- Number of parallel fibers:2 (shared, several lambdas)
- 40 Km, 12 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link7: ALMAGRO-NORTE

- Number of parallel fibers:2 (non-shared)
- 3.9 Km, 8.5 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link8: ALMAGRO-CONCEPCION

- Number of parallel fibers:2 (non-shared)
- 6.4 Km, 8 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Link9: CONCEPCION- NORTE

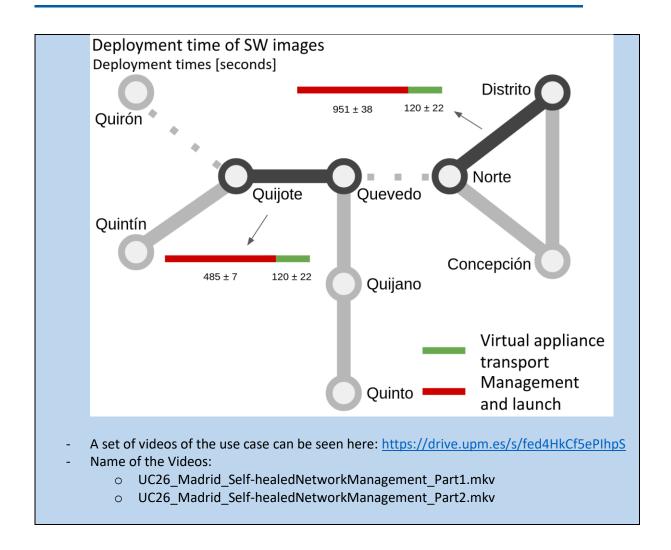
- Number of parallel fibers:2 (non-shared)
- 5 Km, 7 dB losses, SMF
- Telecom connection: Client data rates (1/10/100GB) and format (Ethernet, OTN, Fiber Channel) and occupied wavelengths
- Quantum link: Fiber for QKD system (dark/shared); if shared -> wavelength and launch power of telecom channel needed
- Other wavelength restrictions of QKD and auxiliary channel (none / wavelength range)

Planned deployments

- 6 links September 2021 - Dec 2021

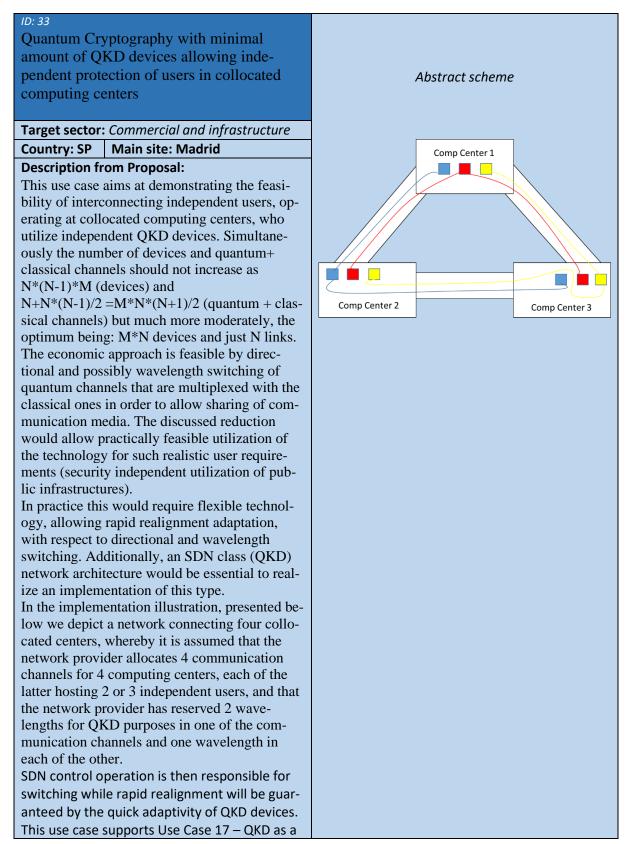
Interfaces between layers:

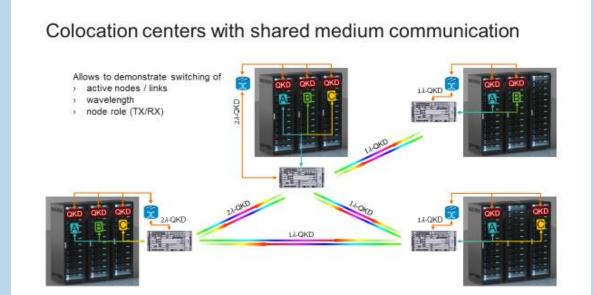
- Preferable 004 (because of QoS and expected latencies) 014 if 004 is not implemented.


	Impact
Target sector planned impact:	Achieved KPI demonstrations:
 Network operators' management systems. Digital services providers' management systems. 	 KPI 15: Deployment time of SW images (fully achieved). KPI 32: Latencies for control commands (ongoing)
Companies attracted through use	
case:	
 Telefónica de España 	
- BT	
- DT	

Time of demonstration **Deployment:** Initial development and adaptation of the Madrid Network: 10 months. The deployment is based on a NFV management technology, OpenStack, and a secure transportation tool developed by Madrid team, DAAP. To deploy the use case is required: Around 3 days to install and configure OpenStack in the trusted node. This step is required only once. Around 5 and 10 minutes to deploy Trusted Node images to manage the QKD infrastructure. This time depends on the size of the image. Currently is around 9GB. Note that this deployment assumes that all the SDN stack of the Madrid Quantum Network is fully deployed and operative. Time of demonstration: The first version of the self-healed network management based on OpenStack was developed on 9/2021. However, several improvements have been made since them. The first version of the self-healed network management based on DAAP was developed on 11/2021. This demonstrator can be executed on the nodes running the mentioned technology, namely Quijote and Norte. Results Lessons learned: QKD services can enhance the network management by feeding self-healed solutions. As OpenStack and DAAP are software programs, they need enough computational power to perform the encryption of the communications relayed. Changes necessary to already deployed infrastructure: The current version of the QKD as a cloud service use case runs on top of the Madrid's SDN stack, which delivers QKD services using the ETSI ISG QKD 004 standard access point. Additional computation power was needed in some IT systems deployed. **Target sector demonstrated impact:** Securing the communications of the network management in NFV operations. **Estimated cost of implementation:** QKD system: 150k€ (2 DVs modules) Personnel for installation and maintenance: 20k€ Other equipment used: 10k€ Desired airport cost for all of this: 10k€ Software Development: Using as base the Madrid SDN Stack infrastructure, the implementation of the IPSec infrastructure requires 1PM during 10 months approximately. = 50K€ The 5G software simulator = 0K€ Total cost: 240k€ UC working on one link.

Further comments:


- The following figure show the deployment time of software images for NFV in two different scenarios in the network, known as KPI 15.



3.13 Use Case 33

cloud service and Use Case 25 – Quantum				
Cryptography for B2B networks (5G is not rele-				
vant here).				
HWDU plans to install 10 QKD devices in 7 loca-				
tions to this end.				
Partner	Role/Function			
TID	Testbed and SW provider			
RM	Testbed provider			
UPM	SW provider			
HWDU	QKD System provider			
Other				
Im	ipact			
Target sector planned impact:	Planned KPI demonstrations:			
Security and privacy in distributed computing	- Connection latencies			
centers	- Key rates			
Companies attracted through use case:	- Data throughput			
- Telefónica				
- BT				
- DT				
Implen	nentation			
 Work plan/TODO list: 49. Select locations for the test and verify feasibility based on network parameters (local tests if necessary) 50. Prepare QKD systems and interfaces (fall of 2020) 51. Organize necessary OTN equipment wherever necessary (free of charge) 52. Schedule delivery and deployment with all involved partners 53. Deploy and carry out an initial test phase 54. Full scale operation, data collection 55. Analysis of results and publication 				
Block diagram				
Illustration of a feasible imlementation				

A provider offers the possibility to rent server racks distributed over multiple data centers. This allows clients to run their services and storage in a geolocation-redundant fashion, which is safe against most failures, even most natural disasters. For economic reasons, shared building/cooling/maintenance, the data-center service is provided to multiple clients in the same data center, a colocation center.

The colocation-center provider adds the feature of QKD-secured connections between the data centers, e.g., for data synchronization and backups. This gives maximum control to the customer, the key generation and distribution is carried out in the domain of the customer. The QKD devices/links/networks for each customer might be by different QKD providers, respectively. Only a limited amount of fiber connections is available between the data centers and multiple customers have to share the same fiber for individual data traffic and QKD, respectively. The requirements for key generation are assumed to be moderate, different QKD links should be operate in a time and/or wavelength multiplexed fashion to limit the required channel count for the QKD links. The network of the data centers might be a star or ring topology, the channel allocation for the QKD links should be centrally controlled by SDN. An example: Customer A might have rented racks in four different locations as shown in the picture, customer B and C only have rented 3 racks, respectively. Three data centers are connected in a ring, while one of the data centers is only attached to one of the ring nodes. For most of the connections only one wavelength (e.g. ITU34) is available, for one of the connection two wavelengths (e.g. ITU33 & ITU34) are available. All customers want to generate keys between all their racks, respectively. So not all QKD connections can be active at the same time. To avoid exclusive QKD network utilization, the QKD devices will operate on different wavelengths depending on their peer. So if C and A want to perform QKD on the bottom link, they need to time multiplex on ITU34. When they both want to perform QKD on the left link, A could switch to ITU33 and C could stay on ITU34.

Multiple requirements for the QKD devices can be derived:

* The QKD devices need to be able to be operate on the same fiber as QKD devices from other providers, time or wavelength multiplexed.

* The QKD channel allocation should be implemented dynamically with SDN, which controls the time and wavelength multiplexing.

* The QKD devices need to support the channel and link switching driven by SDN.

* The inclusion of the QKD devices in the racks need to be tamper proof.

This defines a very modular and flexible SDN based QKD scenario with the need of path and wavelength switching.

Site access Note: With previous tests in Telefonica production environment HWDU devices are ready for a very broad variety site access conditions Available power From Previous experience with the Telefonica production environment, necessary power is available. Internet connection We need at least one internet connection. One was (is) available at the Almagro site of Telefonica. **Existing equipment** We shall bring necessary telecommunication equipment if such is not provided by the network itself Encryptors **Manufacturers and Devices** To be provided as necessary by the network. Huawei encryptors will not be used. **QKD Systems Manufacturers and Devices** o 5 CV QKD Links – all switchable (directional, wavelength), and controllable by Madrid SDN controllers. The devices (depending on distance and attenuation) can cpropagate with up to 20 downstream 1dBm channels

T	Impact					
Target sector planned impact:	Achieved KPI demonstrations:					
- Commercial	 36 different loop-free links could be realized with 					
 Infrastructure features 	only 5 transmitters and 5 receivers.					
	 Four different QKD links are connected 					
Companies attracted through use	simultaneously over the same fiber pair to					
case:	demonstrate shared-medium QKD.					
-						
	ime of demonstration					
Deployment:						
- Initial coordination and adaptation of the Madrid Network: 14 months.						
 The deployment is based on the management of different QKD links connected 						
simultaneously over the same fiber to demonstrate shared-medium QKD						
 Around 40 seconds to configure each new Quantum link. 						
- Note that this deployment is managed by the SDN stack of the Madrid Quantum Network,						
that has been improved to be operative with these new features.						
- The optical switching is done through the Madrid SDN Stack.						
 The deployment of the SDN stack takes into account this new QKD switching feature. 						
- The deployment of the SDN sta	ack takes into account this new QKD switching reature.					
Time of demonstration:						
 The first version of the QKD op 	otical switching was ready on 10/2021 and continuous					
improvements are being made	<u>.</u>					

- This demonstrator can be executed on all the nodes running the QKD switching technology (see further comments).

Lessons learned:

- QKD optical switching could be used as a medium to optimize the QKD resources of interconnecting independent users, companies, CPDs etc. operating at collocated computing centers, who utilize independent QKD devices.

Results

Changes necessary to already deployed infrastructure:

- The QKD hardware has been improved to offer this new feature, making the devices wavelength tuneable and exposing this feature through a simple interface to be managed through the SDN Stack.
- The control of the Optical Switching is done through the use of QuAM/QuAI interfaces. These interfaces need to be upgraded on the Madrid Quantum Network Stack

Target sector demonstrated impact:

- Security and privacy in distributed computing centres.

Estimated cost of implementation:

- QKD systems: 120k€ (3 CV modules)
- Personnel for installation and maintenance: 20k€
- Other equipment used: 10k€
- Desired airport cost for all of this: 10k€
- Software Development: Using as base the Madrid SDN Stack infrastructure, the implementation of this infrastructure requires 1PM during 10 months approximately. = 50K€
- Total cost: 200k€ UC working on two links.

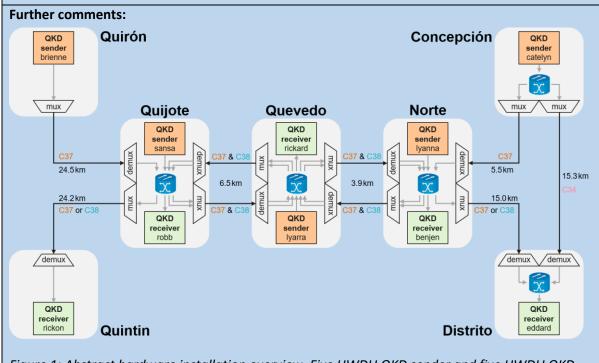


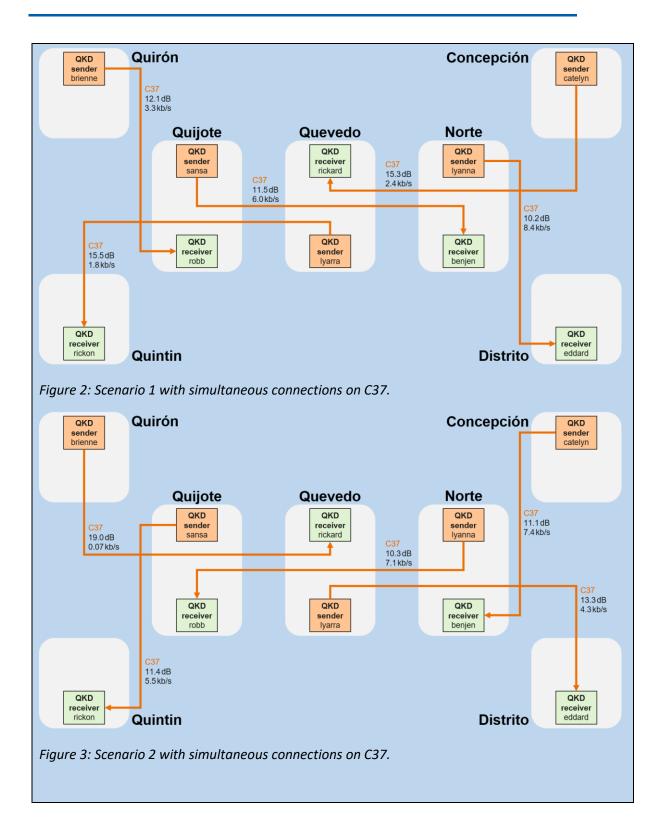
Figure 1: Abstract hardware installation overview. Five HWDU QKD sender and five HWDU QKD receiver have been deployed in seven different locations. Through light-path switches (blue

cylinders) any sender can reach any receiver, although the total link loss is too high for the most distant links. The light-path switches have been combined with optical multiplexers and demultiplexers to allow different wavelengths to be used for QKD. The multiplexing hardware is also used for copropagating classical channels and/or QKD signals of IDQ or Toshiba devices. The HWDU QKD sender and receiver can be tuned to any wavelength in the C-band. The multiplexing setup limits the wavelengths as indicated in the figure to channel C37 (193.7 THz / 1548 nm) in most connections. Many connections also support C38 (193.8 THz / 1547 nm), one connection only supports C34 (193.4 THz / 1550 nm). The distances between the different locations are given as reported by OTDR measurements.

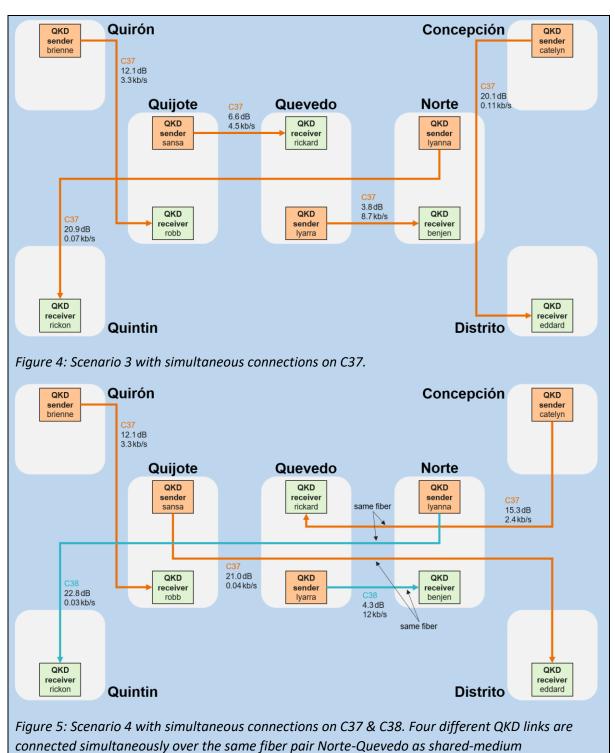
Figure 1 gives a rough overview of the QKD device, switching, and multiplexing hardware installation for this demonstration. Figures 2 – 6 show possible scenarios with different light-path switch and wavelength settings. All links in the same scenario are active at the same time. The different settings can be configured in a time division multiplexed manner according to quality of service requirements.

In each Figure and the table below the figures, the link losses and key rates are measured by the QKD devices and are depicted for each link, respectively. Since links can go through multiple switching and multiplexing stages, the link loss of a multi-hop link is not necessarily equal to the sum of the link losses of the single hop links.

The HWDU QKD devices support link losses between 0 and 23dB. The C38 link between Norte and Quintin as shown in Figure 5 scratches with 22.8dB at the maximum supported reach.


The HWDU QKD devices allow customers to configure trusted loss for a trusted transmit perimeter. All presented links in Figures 2-6 utilize this feature and the loss introduced by the first switching and multiplexing stage is trusted for each link, respectively. E.g. the trusted loss in the Norte – Quintin link is 1.4dB (switch + mux as shown in Figure 1). The total loss in the Norte – Quintin link including the trusted transmit loss is 24.2dB. The HWDU devices support a total link loss of up to 28dB, with at least 5dB of this loss configured as trusted transmit loss. The configured trusted losses can be found in the table below the figures.

The given key rates are only preliminary indications. No long-term measurements have been performed so far, finite-size effects are therefore not considered. This will be addressed in the following period. The key rate depends on many factors, not only on the loss. E.g. the Raman noise on each link, respectively. System instabilities also reduce the key rate at the moment, which will be addressed in the following period. Because of the different influences, key rates for links with higher loss can be higher as for links with lower loss.


The scenarios in Figures 5 and 6 utilize the multi-wavelength capabilities. Respectively, four different QKD links are connected simultaneously over the same fiber pair Norte-Quevedo in Figure 5 and Quevedo-Quijote in Figure 6 to demonstrate shared-medium QKD.

Many switching and wavelength configurations beyond the shown scenarios are possible depending on the requirements. The extensive switching capabilities and flexibility demonstrate the reduction of QKD device hardware. 36 different, loop-free links can be realized with only five transmitters and five receivers.

demonstration.

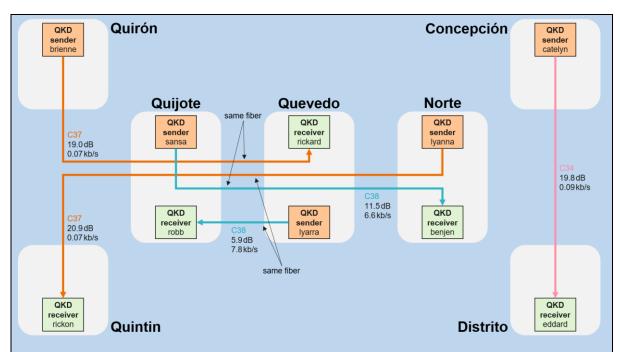


Figure 6: Scenario 5 with simultaneous connections on C34, C37 & C38. Four different QKD links are connected simultaneously over the same fiber pair Quevedo-Quijote as shared-medium demonstration.

Table listing link losses and key rates as measured by the QKD devices and configured trusted transmit (TX) losses for each link, respectively. The table includes back-to-back configurations in Norte, Quevedo, and Quijote. Five links have a too high loss for key generation.

sender	receiver	optical channel	trusted TX loss	channel loss	key rate
		[THz]	[dB]	[dB]	b/s
catelyn (Concepción)	eddard (Distrito)	193,4	3,3	19,8	9,0E+01
	(- via Norte -)	193,7	5,3	20,1	1,1E+02
	benjen (Norte)	193,7	5,3	11,1	7,4E+03
	rickard (Quevedo)	193,7	5,3	15,3	2,4E+03
	robb (Quijote)	193,7		too high	no key
	rickon (Quintin)	193,7		too high	no key
lyanna (Norte)	eddard (Distrito)	193,7	1,1	10,2	8,4E+03
		193,8	1,1	10,5	8,1E+03
	benjen (Norte)	193,7	0,5	1,6	1,7E+04
		193,8	0,5	1,7	1,7E+04
	rickard (Quevedo)	193,7	1,4	5,1	9,0E+03
		193,8	1,4	5,2	3,2E+03
	robb (Quijote)	193,7	1,4	10,3	7,1E+03
		193,8	1,4	12,1	5,2E+03
	rickon (Quintin)	193,7	1,4	20,9	7,2E+01
		193,8	1,4	22,8	3,6E+01
lyarra (Quevedo)	eddard (Distrito)	193,7	1,4	13,3	4,3E+03
		193,8	1,4	13,3	4,3E+03
	benjen (Norte)	193,7	1,4	3,8	8,7E+03

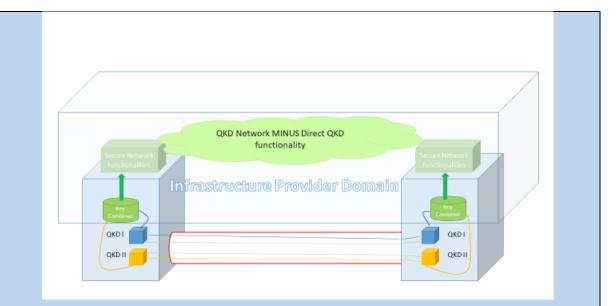
OPEN	(QKD

		193,8	1,4	4,3	1,2E+04
	rickard (Quevedo)	193,7	0,5	0,1	1,4E+04
		193,8	0,5	0,2	1,4E+04
	robb (Quijote)	193,7	1,4	4,8	1,1E+04
		193,8	1,4	5,9	7,8E+03
	rickon (Quintin)	193,7	1,4	15,5	1,8E+03
		193,8	1,4	17,3	7,0E+02
sansa (Quijote)	eddard (Distrito)	193,7	1,4	21,0	4,1E+01
		139,8	1,4	20,9	4,1E+01
	benjen (Norte)	193,7	1,4	11,5	6,0E+03
		139,8	1,4	11,5	6,6E+03
	rickard (Quevedo)	193,7	1,4	6,6	4,5E+03
		139,8	1,4	6,9	1,0E+04
	robb (Quijote)	193,7	0,5	1,2	1,2E+04
		139,8	0,5	1,3	1,6E+04
	rickon (Quintin)	193,7	1,1	11,4	5,5E+03
		139,8	1,1	11,8	6,2E+03
brienne (Quirón)	eddard (Distrito)	193,7		too high	no key
	benjen (Norte)	193,7		too high	no key
	rickard (Quevedo)	193,7	3,3	19,0	7,3E+01
	robb (Quijote)	193,7	3,3	12,1	3,3E+03
	rickon (Quintin)	193,7		too high	no key

- A video of this use case can be found here: <u>https://drive.upm.es/s/fed4HkCf5ePIhpS</u>

- Name of the Video: UC33_Madrid_QKD_OpticalSwitching.mkv

3.14 Use Case 34


ID: 34

security independence of a network provider from QKD device manufacturers Abstract scheme Target sector: Commercial and infrastructure Country: SP Main site: Madrid **Description of Proposal:** This use case aims at demonstrating the possibility to security-wise decouple QKD-providers/manufacturers from secure infrastructure operators. The principle is simple and in theory well known since a long time. It is almost obvious that \otimes if two (or more) QKD providers deliver key be-QKD II tween two identical end points then a combination of both keys (the simplest version being XORing) the resulting key is unrelated to any of the two original keys. Even if each QKD provider is leaking her/his entire key to a third party then the combination remains secure for the user/operator if the mentioned third parties do not collude one with the other (a requirement that is imperative). In this sense it is even better if the manufacturers are driven by incompatible interests and would not have any incentive for collaboration. Paradoxically the best security for the user can be achieved if mutual enemies are her/his key providers. In this case, however, all the security responsibility lies with the operator/designer of the embedding network. Alternatively, in a more lavish scenario, an enduser can utilize independent networks (a scenario that had been put forward back in SECOQC that is almost equivalent to finding non intersecting routing paths in the network). This idea is certainly intellectually appealing but more difficult to realize. The combination can be extended to include Post Quantum Keys to further increase compatibility with emerging (NIST) standards and ensure a practically-water proof security against emerging realistic threats (as is a quantum computer that has been related to "quantum safety") The basic challenge of this use case is to be able to prototypically demonstrate in an OpenQKD test bed. In the Madrid testbed the conditions are in principle perfect as several QKD providers are active and the network layer design and implementation is in the responsibility of UPM. This use case further requires test-bed level integration of at least two QKD manufactures -

something that obviously would demonstrate					
practicality and interoperability of QKD in gen-					
eral					
The use case is strongly related to Use –case 16					
"Critical infrastructure Protection" and "Use case					
15 "Network security and attestation"					
Partner	Role/Function				
TID	Testbed and SW provider				
RM	Testbed provider				
UPM	SW provider				
IdQuantique	QKD System provider				
HWDU	QKD System provider				
Other					
Impa	act				
Target sector planned impact:	Planned KPI demonstrations:				
Security and privacy in QKD Networks with secu-	- Connection latencies				
rity independence from QKD providers	- Final key-rate through the joint link				
Companies attracted through use case:	- Data throughput				
- Telefónica					
- BT					
- DT					
Impleme	ntation				
Work plan/TODO list:					
	ibility based on network parameters (local tests				
if necessary)					
57. Prepare QKD systems and interfaces (fall o	f 2020)				
58. Organize necessary OTN equipment where					
	59. Schedule delivery and deployment with all involved partners				
60. Deploy and carry out an initial test phase					
61. Full scale operation, data collection					
62. Analysis of results and publication					
Block diagram					
Illustration of a feasible imlementation					

A provider of a network hires two QKD manufacturers to provide QKD systems. Here the systems are positioned in Nodes that are owned and managed by the Network operator. The QKD systems' signals can co propagate over the same quantum link, this being graphically represented here as the same fiber, in which all classical and quantum channels co-propagate jointly. In, practice, however, co-propagation of two (in principle also more) quantum channels co-propagate on the same fiber while classical post-processing can be outsourced elsewhere.

The outputs of the independent QKD devices (here I and II) needs to be combined appropriately in a functional element (Key Combiner), provided by the infrastructure designer/operator. Its output is then fed into higher network functional elements that are not considered here. This is also not necessary as the architectural design of the full network is completely independent from the "Combined QKD Layer" the output of which can be universally integrated in any network design. A number of requirements for the QKD devices can be derived:

* The QKD devices need to be able to be operate on the same fiber as QKD devices from other providers, typically wavelength multiplexed.

* The inclusion of the QKD devices need to be tamper proof (something that does not need to be explicitly the case in a demonstration test bed).

This defines a highly secure design, in which the operator/user does nt need to trust manufacturer.

Site access

Note: With previous tests in Telefonica production environment HWDU devices are ready for a very broad variety site access conditions. AS in this case HWDU envisions co-propagation with IdQantique devices need to be suited to same environment for which the HWDU ones need to. HWDU guarantees for that.

Available power

From Previous experience with the Telefonica production environment, necessary power is available.

Internet connection

We need at least one internet connection. One was (is) available at the Almagro site of Telefonica. Existing equipment

We shall bring necessary telecommunication equipment if such is not provided by the network itself

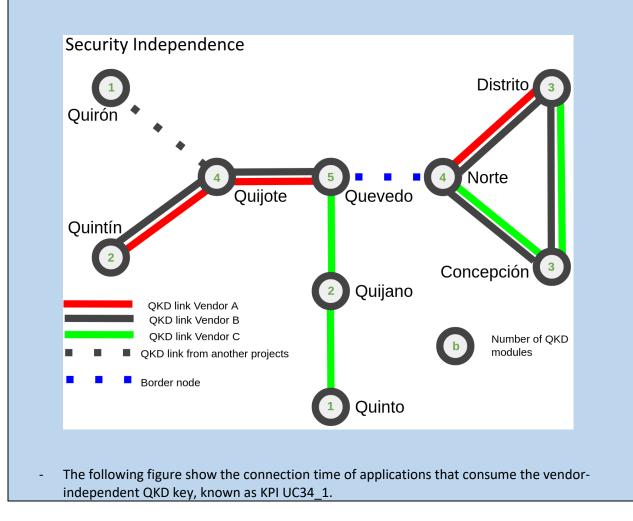
E	Encryptors				
Manufacturers and Devices					
To be provided as necessary by the network. Huawei encryptors will not be used.					
Manufacturers and Devices	KD Systems				
 5 CV QKD Links – all switchak drid SDN controllers. The dev propagate with up to 20 dow 	ble (directional, wavelength), and controllable by Ma- vices (depending on distance and attenuation) can c- vnstream 1dBm channels ed for the present use case, while this also operate in				
	Impact				
Target sector planned impact:	Achieved KPI demonstrations:				
 Commercial. Infrastructure features. Companies attracted through use case: Telefónica de España BT DT Huawei IdQ 	 KPI UC34_1: Connection latencies (fully achieved) KPI UC34_2: Final key-rate through the joint link (ongoing) KPI UC34_3: Data throughput (ongoing) 				
- Toshiba					
	of demonstration				
QKD 004 standard access point. To d Around 10 minutes to config This UC additionally requires where the different QKD dev 	vsical links consuming key through the Madrid's ETSI ISG eploy the use case is required: ure the application entities. the use of several gateways connected to multiple VPNs vices are hosted (network segregation). that the complete SDN stack of the Madrid Quantum				
Time of demonstration:					
on 02/2022 and continuous improve	dence use case based on SDN applications was developed ments are being made. on the nodes running the mentioned technology, namely				
	Results				
vendor in QKD networks.The vendors involved on this UC are	ficiently combined to make security independent of the on logically segregated networks. Therefore, it has been as (through a common gateway) to give the SDN				

As the SDN applications that consume and combine (e.g. XOR) the key are software programs, they need enough computational power to perform the encryption of the communications relayed.

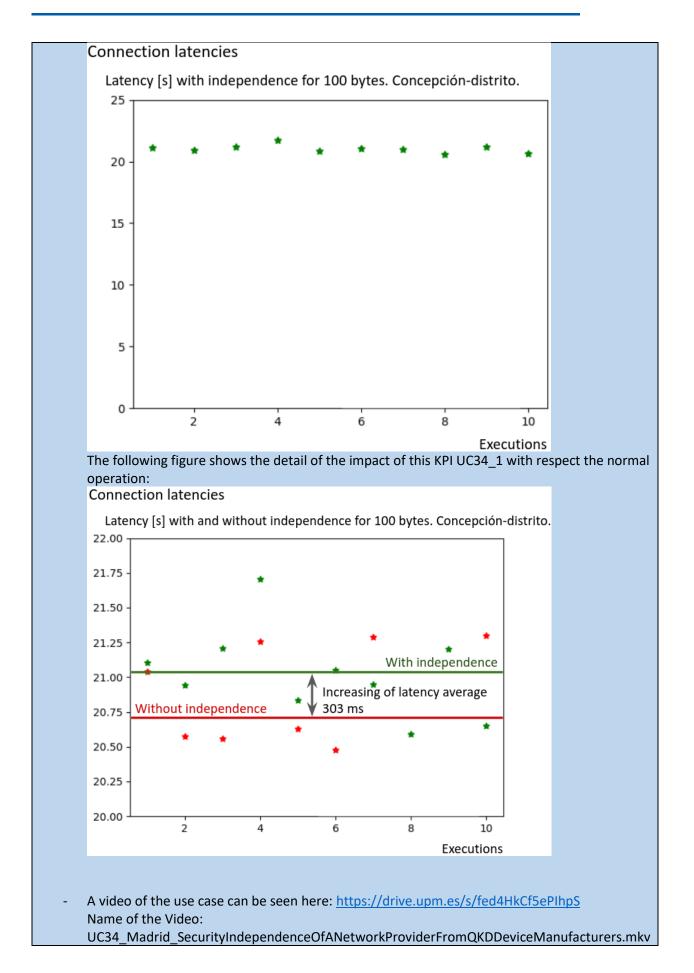
Changes necessary to already deployed infrastructure:

- The current version of this use case runs on top of the Madrid's SDN stack, which delivers QKD services using the ETSI ISG QKD 004 standard access point.
- There are certain nodes that need to access simultaneously to different segregated networks.
 Additional computation power was needed in some IT systems deployed.

Target sector demonstrated impact:

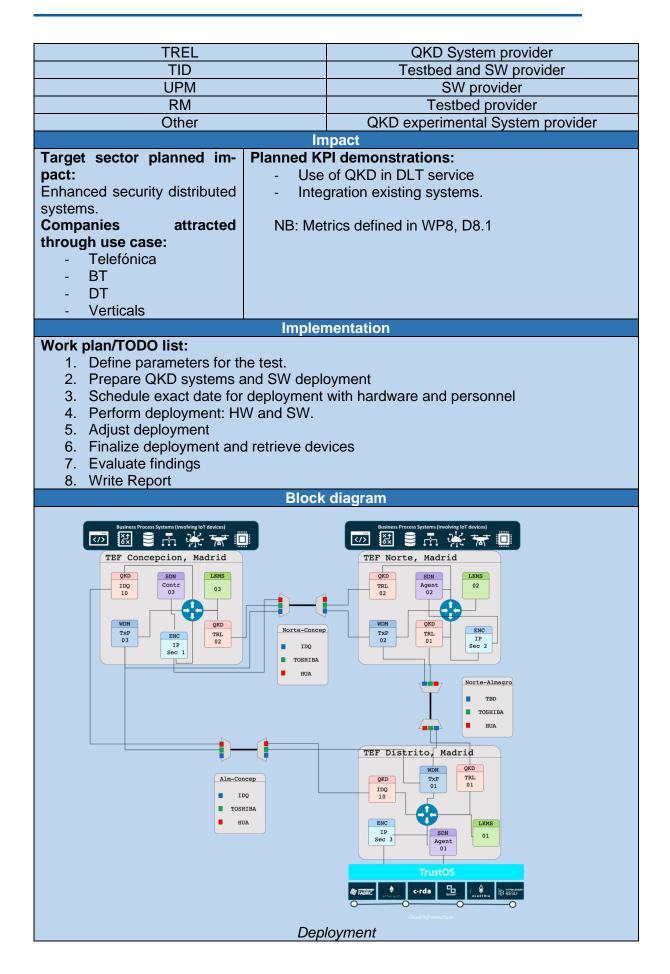

Delivered vendor-independent secure key in QKD networks.

Estimated cost of implementation:


- QKD systems: 150k€ (2 DV modules) +80k€ (2 CV modules)
- Personnel for installation and maintenance: 20k€
- Other equipment used: 10k€
- Desired airport cost for all of this: 10k€
- Software Development: Using as base the Madrid SDN Stack infrastructure, the implementation of this infrastructure requires 1PM during 10 months approximately. = 50K€
- Total cost: 320k€ UC working on one link.

Further comments:

- The following figure shows a map of the networks where this metric has been evaluated



3.15 Use Case 35

Private transactions and permissioning in DLT networks. Target sector: Commercial and infrastructure Country: Main site: Madrid SP Description from Proposal: The integration of QKD in private and permissioned DLT networks can significantly improve the security and performance of private transactions. Blockchain adoption to deliver trust in corporate environments leverage in deploying private networks. Telefonica has developed TrustOS (https://aiofthings.telefonicatech.com/en/tech- nology-services/blockchain-services/trust-os), a kind of middleware that makes business applica- tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible. The first point where this can be done is the IoT device. QKD allows the IoT devices. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we can envision:
DLT networks. Target sector: Commercial and infrastructure Country: Main site: Madrid SP Description from Proposal: The integration of QKD in private and permissioned DLT networks can significantly improve the secu- rity and performance of private transactions. Blockchain adoption to deliver trust in corporate en- vironments leverage in deploying private networks. Telefonica has developed TrustOS (https://aiofthings.telefonicatech.com/en/tech- nology-services/blockchain-services/trust-os), a kind of middleware that makes business applica- tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible. The first point where this can be done is the IoT devices. QKD allows the IoT devices. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the key integrity. Between the potential IoT sectors we
Target sector: Commercial and infrastructureCountry:Main site: MadridSPMain site: MadridDescription from Proposal:The integration of QKD in private and permissionedDLT networks can significantly improve the security and performance of private transactions.The integration to deliver trust in corporate environments leverage in deploying private networks. Telefonica has developed TrustOSTrustOS(https://aiofthings.telefonicatech.com/en/tech- nology-services/blockchain-services/trust-os), a kind of middleware that makes business applica- tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain.For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible. The first point where this can be done is the IoT device.QKD allows the IoT device.QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
Country: SPMain site: Madrid Main site: MadridDescription from Proposal: The integration of QKD in private and permissioned DLT networks can significantly improve the secu- rity and performance of private transactions. Blockchain adoption to deliver trust in corporate en- vironments leverage in deploying private networks. Telefonica has developed TrustOS (https://aiofthings.telefonicatech.com/en/tech- nology-services/blockchain-services/trust-os), a kind of middleware that makes business applica- tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IOT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible. The first point where this can be done is the IOT device. QKD allows the IoT device. QKD allows the IoT device. QKD allows the IoT device. WCD allows the IoT device.Here of the source as possible. The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors weImage: Source
Country: SPMain site: Madrid SPDescription from Proposal: The integration of QKD in private and permissioned
SP Description from Proposal: The integration of QKD in private and permissioned DLT networks can significantly improve the secu- rity and performance of private transactions. Blockchain adoption to deliver trust in corporate en- vironments leverage in deploying private networks. Telefonica has developed TrustOS (https://aiofthings.telefonicatech.com/en/tech- nology-services/blockchain-services/trust-os), a kind of middleware that makes business applica- tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible . The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
The integration of QKD in private and permissioned DLT networks can significantly improve the secu- rity and performance of private transactions. Blockchain adoption to deliver trust in corporate en- vironments leverage in deploying private networks. Telefonica has developed TrustOS (https://aiofthings.telefonicatech.com/en/tech- nology-services/blockchain-services/trust-os), a kind of middleware that makes business applica- tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible . The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
DLT networks can significantly improve the security and performance of private transactions. Blockchain adoption to deliver trust in corporate environments leverage in deploying private networks. Telefonica has developed TrustOS (https://aiofthings.telefonicatech.com/en/tech- nology-services/blockchain-services/trust-os), a kind of middleware that makes business applica- tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible. The first point where this can be done is the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
DLT networks can significantly improve the security and performance of private transactions. Blockchain adoption to deliver trust in corporate environments leverage in deploying private networks. Telefonica has developed TrustOS (https://aiofthings.telefonicatech.com/en/tech- nology-services/blockchain-services/trust-os), a kind of middleware that makes business applica- tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible. The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
Blockchain adoption to deliver trust in corporate environments leverage in deploying private networks. Telefonica has developed TrustOS (https://aiofthings.telefonicatech.com/en/tech- nology-services/blockchain-services/trust-os), a kind of middleware that makes business applica- tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible. The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
vironments leverage in deploying private networks. Telefonica has developed TrustOS (https://aiofthings.telefonicatech.com/en/tech- nology-services/blockchain-services/trust-os), a kind of middleware that makes business applica- tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible. The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
Telefonica has developed TrustOS (https://aiofthings.telefonicatech.com/en/tech- nology-services/blockchain-services/trust-os), a kind of middleware that makes business applica- tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible. The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
(https://aiofthings.telefonicatech.com/en/tech- nology-services/blockchain-services/trust-os), a kind of middleware that makes business applica- tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible. The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
 nology-services/blockchain-services/trust-os), a kind of middleware that makes business applications and solutions agnostic of the underlying block-chain technology, but leverage all the advantages, including the traceability, certification, reconciliation and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gathered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible. The first point where this can be done is the IoT devices. QKD allows the IoT devices sending encrypted information with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
kind of middleware that makes business applica- tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible . The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
tions and solutions agnostic of the underlying block- chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible . The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
chain technology, but leverage all the advantages, including the traceability, certification, reconcilia- tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible . The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
 including the traceability, certification, reconciliation and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gathered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible. The first point where this can be done is the IoT devices. QKD allows the IoT devices sending encrypted information with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
tion and tokenisation features. Instead of talking the blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible . The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
blockchain language, applications just must invoke easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible . The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
 easy plug and play HTTP APIs modeling the asset they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible. The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
they want to trace in blockchain. For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible . The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
For industrial deployments, some of the data gath- ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible . The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
ered by IoT devices are critical for the business. To ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible . The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
ensure data integrity, it is desirable that the data be loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible . The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
loaded to the blockchain (and become immutable and verifiable) as quickly as possible and as close to the source as possible . The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
and verifiable) as quickly as possible and as close to the source as possible . The first point where this can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
can be done is the IoT device. QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
QKD allows the IoT devices sending encrypted in- formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
formation with a QKD generated key to improve the security of both the transmission channel and the key integrity. Between the potential IoT sectors we
security of both the transmission channel and the key integrity. Between the potential IoT sectors we
key integrity. Between the potential IoT sectors we
-Telco: Audit data information for about in-
frastructure sites or devices, such as mobile
communication towers or terminal logistic chain
• -E-health: IoT areas related with privacy
and confidentiality of the information
 -Defense: Military IoT equipment with
strong security demands.
In this use case, a common framework integration
to support any kind of IoT device to protect HTTP
transactions with TrustOS has been implemented to
address any scenario demand.
Partner Role/Function

QKD System provider

idQ

Site access

Note: Eleven possible places can be used for this test, eight of them are in the RM network and they can be accessed with less restrictions and the other three are within the Telefonica production network, with more restricted access. Ideally, all the sites (with a topology that imply eight links -three of them in a star with a central node and several hops in one of the branches(IMDEASW/UPM-RMCIEMAT, RMCIEMAT-UAM, RMCIEMAT-CSIC, CSIC-UC3M, UC3M-IMDEANW, IMDEANW-URJC, URJC-RMCIEMAT), three of them in a ring (Telefonica production network, DISTRITO-NORTE, DISTRITO-CONCEPCION, CONCEP-CION-NORTE) and another link connecting both (CSIC-NORTE) topologies (ring and star) could be used. All RM nodes are in production and have to provide classical communications at the same time. Network operator requires also that every node has to have a redundant link where no quantum communications are taking place at the same time than the classical in order to safeguard classical communications from any possible problem coming from the QKD equipment or associated devices.

For this case we selected the use of Telefónica's Quantum Ring for a three nodes DLT network setup. This infrastructure would be ready close to the end of the project. For the testbed, each node will run an instance of a TrustOS DLT solution enabling IoT transactions. Whenever one of the nodes running IoT devices (NORTE or CONCEPCION) wants to send a private IoT related data transaction with the TrusOS Cloud production (DISTRITO) a QKD exchange will be performed between both of them. The exchanged key will be used to encrypt the transaction and it will be stored in the enclaves of Party A and B. Thus, any of the nodes involved in the key exchange will have access to the content of the private transaction and will be able to dencrypt the information in the blockchain if they have the key.

The RM network and the Telefonica production have different access requirements:

- **RM Sites** Unrestricted □ Restricted ⊠ If restricted how: RM permission
- **Telefónica Production:** Unrestricted
 Restricted
 Kestricted how: restricted to trained persons only

Restricted access examples: with passport; with short training; with trained person; restricted to trained persons only

Available power

What power delivery is available for telecom and quantum devices?

All TID sites have both, AC 230 and DC 48 under request. RM sites have AC 230.

Internet connection

TID sites, only Distrito has internet connection. All RM sites have internet connections (internet connection= equipment can be accessed from the outside)

Existing equipment

TID and RM have in their facilities transmission equipment for classical channels. Moreover, they have routers to provide connectivity among the sites and IT resources for small VM deployments.

DLT nodes

Manufacturers and Devices

- TrustOS service from Telefonica (<u>https://aiofthings.tele-</u> fonicatech.com/en/technology-services/blockchain-services/trust-os).
- Simulated IoT devices

QKD Systems

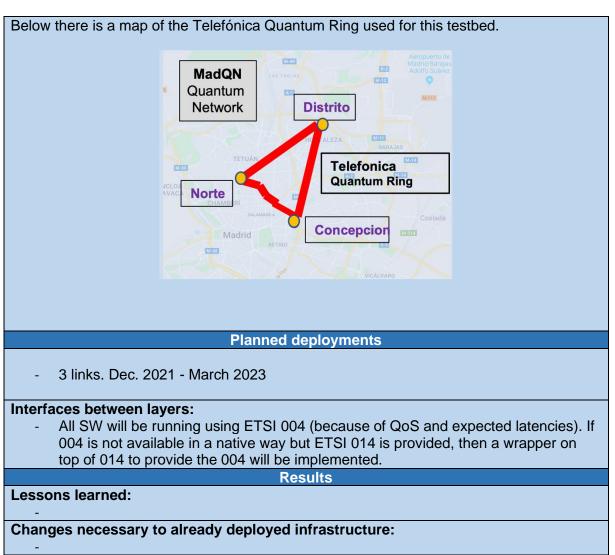
Manufacturers and Devices

0

- o 3 links (Norte-Concepción, Concepción-Almagro and Almagro-Norte)
 - Devices: IDQ, TOSHIBA, ADVA

Link details The available links in the Madrid NW and their characteristics are:

Description	Distanceinkm	Lossindb	Node1	Node2
Almagro - Norte	3.9	6	MAD-03	MAD-04
Norte - Concepcion	5.5	7	MAD-04	MAD-05
Concepcion - Almagro	6.4	7	MAD-05	MAD-03
CIEMAT-UAM	24.5	8	MAD-02	MAD-01
CIEMAT-IMDEA SW	24.2	6	MAD-02	MAD-08
CSIC-UCM	6.5	3.5	MAD-06	MAD-07
CIEMAT-UCM	0.92	1.9	MAD-02	MAD-07
CSIC-UC3M	33.1	10.3	MAD-06	MAD-09
UC3M-IMDEA Networks	1.91	0.4	MAD-09	MAD-10
CIEMAT - URJC	40.68	11.93	MAD-02	MAD-11
URJC - IMDEA Networks	22.47	6.10	MAD-11	MAD-10


- Additionally, a CSIC-Norte link is currently being commissioned. It is a short link of about 1km and losses are expected to be in the range of 2dB. This link is important since it will be the connection between the two infrastructure providers.
- Other intermediate nodes can be used if required.
- Other two links UAH-UAM and UAH-CIEMAT (not listed, of about 50-60 Km) are in the process of being formally approved and might be available by the end of the project.

The details of the different links follow:

Telefónica Quantum Ring (Distrito-Norte-Concepción)

The current network is a ring network in downtown Madrid (16 km perimeter). It joins three central offices of Telefónica Spain (Norte, Concepción and Distrito -Nodes MAD03, MAD04 and MAD05-, and crosses several others PoPs in between (not listed). This means that the ring could be, in principle, easily extended to have 5 to 7 Points of Presence). Losses are relatively high due to connectors and, possibly, bending the fiber when going through the PoPs, however they are always within the reach of the QKD systems (always less than 12 dB losses). The network could be used during the whole duration of the project and it has been tested and used already with quantum equipment. These nodes are in production facilities, which means that the access is restricted and follows strict procedures. The nodes are linked by a pair of dark fibres that can be used exclusively for the quantum channels if needed. All nodes can be accessed through an VPN.

KPI demo report:

Separate document

Impact		
Target sector planned impact:-Blockchain transactions-Internet of ThingsCompanies attracted through	 Achieved KPI demonstrations: KPI_1: Number of IoT devices connected simultaneously KPI_2: Rate of measurements sent per device 	
use case: - Telefónica de España	 per second KPI_3: Time it takes to get a QKD key Note: This are preliminary results, and additional test 	
Ti	will be made once final setup is ready. me of demonstration	
Deployment: Initial development an adaptation of the Madrid Network. 3 months. 		

- Note that this deployment assumes that all the SDN stack of the Madrid Quantum Network is fully deployed and operative. It uses 1 link between Distrito and Norte nodes. In Norte node resides IoT devices and use case clients and in Distrito resides the Telefónica TrustOS service.

- The QKD secure transfer proposed on this UC will protect a set of sensitive IoT data delivered and stored in the blockchain. The information is managed through ciphering at application layer.

Time of demonstration:

- This is the first version of this UC fully functional. June 2022.
- This demonstrator is being run on the Madrid Network over a virtualized environment and it can be deployed physically close to any IoT device. The current demonstrator is running over the Telefonica nodes, so it can use the Telefonica's TrusOS Permissioned Distributed Ledger (PDL) platform (https://aiofthings.telefonicatech.com/en/technology-services/blockchainservices/trust-os)

Results

Lessons learned:

- QKD Stack thorugh API 004 provides a constant source of keys, suitable for encryption periodic IoT messages, that demands private information. For example data related IPR industrial information, medical sensors.
- Solution is based on light REST API protocol optimized for IoT devices. The solution is design to have co-located IoT devices with QKD Node. E.g.: Military building, hospital, Factory, etc.
- Remote IoT devices should combine PQC as a solution to access QKD keys when there is no co-location. Future plans involves to link remote IoT combining PQC

Changes necessary to already deployed infrastructure:

- IT resources and virtualization software was added to cover the use case and provide connectivity with SDN stack over ETSI ISG QKD 004.

Target sector demonstrated impact:

Commercial and Infrastructure related to IoT market.

Estimated cost of implementation:

- QKD systems: 150k€
- Personnel for installation and maintenance: 20k€
- server equipment used: 15k€
- License from TrusOS: 0k€ (non-commercial solution available for testing)
- Software Development: 1PM during 3 months approximately. = 23K€ Total cost: 200k€ UC working on one link.

KPIs		
Number of IoT devices connected simultaneosly	10 devices	
Rate of measurements sent per device per second	1 x 60 seconds	
Time it takes to get a QKD key	21.7537 seconds	

4 Remarks and Conclusions

Some use cases already achieved to demonstrate the new possibilities enabled by quantum key distribution. They all achieved the planed quality and key rates. Mainly due to pandemic with limited access to test sites and deliverable problems some of the use cases got delayed but are currently catching up with many demos planned for summer 2022 and results by the end of the year. These achievements will be made available in a later deliverable.